


OIB



## Energieausweis für Nicht-Wohngebäude

есотесн

Niederösterreich

**GEBÄUDE** 

Bürogebäude Gebäudeart

gemaß Onorm H 5055 und Richtlinie 2002/91/EG

Gebäudezone Beheizt

Straße

PLZ/Ort

3342 Opponitz

Eigentümer

Gemeinde Opponitz Infrastruktur KG

3342 Opponitz, Hauslehen 21

**Erbaut** 

2012

Katastralgemeinde

Thann

KG-Nummer

3328

Einlagezahl

54

Grundstücksnummer 244/2 und 244/4

SPEZIFISCHER HEIZWÄRMEBEDARF BEI 3400 HEIZGRADTAGEN (REFERENZKLIMA)

Gemeinde Opponitz

Hierauf bezieht sich der Bescheid

om 20.2.2012 ZI: 131-9/17-11-GIKG Für die Gemeinde Opponitz

B

G

30 kWh/m<sup>2</sup>a



**ERSTELLT** 

ErstellerIn

Organisation

Plan-Bau Design GmbH

Erstellerin-Nr.

Ausstellungsdatum

30.08.2011

GWR-Zahl

Gültigkeitsdatum

30.08.2021

Geschäftszahl 127-05-2009

Unterschrift

## Energieausweis für Nicht-Wohngebäude

есотесн

Niederösterreich

gemäß Onorm H 5055 und Richtlinie 2002/91/E0 OIB Constantiation for Bautachinik

| GEBÄUDEDATEN                  |                       | KLIMADATEN               |          |
|-------------------------------|-----------------------|--------------------------|----------|
| Brutto-Grundfläche            | 316,37 m <sup>2</sup> | Klimaregion              | NF       |
| konditioniertes Bruttovolumen | 1468,9 m³             | Seehöhe                  | 422 m    |
| charakteristische Länge (lc)  | 1,55 m                | Heizgradtage             | 3613 Kd  |
| Kompaktheit (A/V)             | 0,65 1/m              | Heiztage                 | 235 d    |
| mittlerer U-Wert (Um)         | 0,20 W/m²K            | Norm-Außentemperatur     | -14,0 °C |
| LEK-Wert                      | 17                    | mittlere Innentemperatur | 20 °C    |

## WÄRME- UND ENERGIEBEDARF

| HWB*    | 9381 kWh/a          | 6,39 kWh/m³a  |             |               | 15,02 kWh/m³a | erfüllt |
|---------|---------------------|---------------|-------------|---------------|---------------|---------|
| HWB     | 7639 k <b>W</b> h/a | 24,15 kWh/m²a | 8439 kWh/a  | 26,68 kWh/m²a |               |         |
| wwwB    |                     |               | 1489 kWh/a  | 4,71 kWh/m²a  |               |         |
| NERLT-h |                     |               |             |               |               |         |
| KB*     | 1220 kWh/a          | 0,83 kWh/m³a  |             |               | 1,00 kWh/m³a  | erfüllt |
| KB      |                     |               | 10884 kWh/a | 34,40 kWh/m²a |               |         |
| NERLT-k |                     |               |             |               |               |         |
| NERLT-d |                     |               |             |               |               |         |
| NE      |                     |               | 1486 kWh/a  | 4,70 kWh/m²a  |               |         |
| HTEB-RH |                     |               | 2239 kWh/a  | 7,08 kWh/m²a  |               |         |
| HTEB-WW |                     |               | -991 kWh/a  | -3,13 kWh/m²a |               |         |
| HTEB    |                     |               | 14541 kWh/a | 45,96 kWh/m²a |               |         |
| KTEB    |                     |               |             |               |               |         |
| HEB     |                     |               | 12389 kWh/a | 39,16 kWh/m²a |               |         |
| KEB     |                     |               |             |               |               |         |
| RLTEB   |                     |               |             |               |               |         |
| BelEB   |                     |               | 10187 kWh/a | 32,20 kWh/m²a |               |         |
| EEB     |                     |               | 24062 kWh/a | 76,06 kWh/m²a |               |         |
| PEB     |                     |               |             |               |               |         |
| CO2     |                     |               |             |               |               |         |

## **ERLÄUTERUNGEN**

Endenergiebedarf (EEB):

Energiemenge die dem Energiesystem des Gebäudes für Heizung und Warmwasserversorgung inklusive notwendiger Energiemengen für die Hilfsbetriebe bei einer typischen Standardnutzung zugeführt werden muss.

Die Energiekennzahlen dieses Energieausweises dienen ausschließlich der Information. Aufgrund der idealisierten Eingangsparameter können bei tatsächlicher Nutzung erhebliche Abweichungen auftreten. Insbesondere Nutzungseinheiten unterschiedlicher Lage können aus Gründen der Geometrie und der Lage hinsichtlich ihrer Energiekennzahlen von den hier angegebenen abweichen.

## Anhang zum Energieausweis gemäß OIB-Richtlinie 6 (8.1.2



 ${\tt Berechnungsverfahren:}\ {\tt Monatsbilanzverfahren}$ 

Klimadaten nach ÖNORM B 8110-5

Heizwärme- und Kühlbedarf nach ÖNORM B 8110-6

Transmissionsleitwert:

Vereinfachte Berechnung nach 5.3

Lüftungswärmeverlust:

Für NWG nach 7.4

Glasanteil gem. ÖNORM EN ISO 10077-1

Verschattungsfaktor vereinfacht nach 8.3.1.2.2

Wirksame Wärmekapazität:

Vereinfachter Ansatz nach 9.1.2 für ... Bauweise

Heiztechnik-Energiebedarf nach ÖNORM H 5056: Details siehe Angabeblatt Raumlufttechnik-Energiebedarf nach ÖNORM H 5057: Details siehe Angabeblatt Kühltechnik-Energiebedarf nach ÖNORM H 5058: Details siehe Angabeblatt Beleuchtungsenergiebedarf nach ÖNORM H 5059: Details siehe Angabeblatt

Der Energieausweis wurde erstellt mit ECOTECH Software, Version 3.1

Lt. Einreichplan Nr. 201, 202, 203 und 204 vom 30. August 2011 Flächen anhand von Skizzen ermittelt, siehe Anhang.

| Bauteil                                                                 | U (max) | U (anf) |         |
|-------------------------------------------------------------------------|---------|---------|---------|
|                                                                         | ` ,     | • •     |         |
| Wände gegen Außenluft                                                   | 0,13    | 0,35    | erfüllt |
| Kleinflächige Wände gegen Außenluft                                     | -       | 0,70    |         |
| Trennwände zwischen Wohn- oder Betriebseinheiten                        | 0,32    | 0,90    | erfüllt |
| Wände gegen unbeheizte, frostfrei zu haltende Gebäudeteile              | -       | 0,60    |         |
| Wände gegen unbeheizte oder nicht ausgebaute Dachräume                  | -       | 0,35    |         |
| Wände gegen andere Bauwerke an Grundstücks- bzw. Bauplatzgrenzen        | -       | 0,50    |         |
| Erdberührende Wände und Fußböden                                        | 0,17    | 0,40    | erfüllt |
| Fenster, Fenstertüren, verglaste oder unverglaste Türen gegen unbeheizt | -       | 2,50    |         |
| Fenster, Fenstertüren gegen Außenluft                                   | -       | 1,40    |         |
| Sonstige Fenster, Fenstertüren, verglaste oder unverglaste Außentüren   | 1,34    | 1,70    | erfüllt |
| Dachflächenfenster gegen Außenluft                                      | 1,40    | 1,70    | erfüllt |
| Sonstige transparente Bauteile gegen Außenluft                          | =       | 2,00    |         |
| Decken gegen Außenluft, gegen Dachräume                                 | 0,11    | 0,20    | erfüllt |
| Innendecken gegen unbeheizte Gebäudeteile                               | -       | 0,40    |         |
| Innendecken gegen getrennte Wohn- und Betriebseinheiten                 | -       | 0,90    |         |

Alle (relevanten) Anforderungen an die wärmeübertragenden Bauteile sind erfüllt.



## Wärmeabgabe

Regelung Abgabesystem Verbrauchsermittlung Raumthermostat-Zonenregelung mit Zeitsteuerung Flächenheizung (35/28 °C) Individuelle Verbrauchsermittlung und Heizkostenabrechnung (Fixwert)

## Wärmeverteilung

Lage der Verteilleitungen Lage der Steigleitungen Lage der Anbindeleitungen Dämmung der Verteilleitungen Dämmung der Steigleitungen Dämmung der Anbindeleitungen Armaturen der Verteilleitungen Armaturen der Steigleitungen Armaturen der Anbindeleitungen Länge der Verteilleitungen [m] Länge der Steigleitungen [m] Länge der Anbindeleitungen [m]

100% beheizt 100% beheizt 100% beheizt 3/3 Durchmesser 3/3 Durchmesser 3/3 Durchmesser Armaturen gedämmt Armaturen gedämmt Armaturen gedämmt 19,65 (Default) 25.31 (Default)

## Wärmespeicherung

Baujahr des Speichers Art des Speichers Basisanschluss E-Patrone HeizregisterSolar Speicher im beheizten Bereich Speichervolumen V<sub>H,ws</sub> [I] Verlust q<sub>b,ws</sub> [kWh/d]

ab 1994

Lastausgleichsspeicher Heizkessel

Anschlüsse gedämmt Anschluß nicht vorhanden Anschluß gedämmt

Nein 270,4 2,85

88,58

(Default) (Default)

(Default)

## Wärmebereitstellung (Zentral)

Baujahr des Kessels

## Bereitstellung

**Brennstoff** 

Art des Kessels **Betriebsweise Einbringung** Modulierend Kessel In Beheizt Kessel Gebläse Nennleistung P<sub>H,KN</sub> [kW]
Wirkungsgrad bei Vollast η<sub>100%</sub> [-]
Wirkungsgrad Vollast im Betrieb η<sub>be,100%</sub> [-] Wirkungsgrad 30% Teillast  $\eta_{30\%}$  [-] Wirkungsgrad 30% im Betrieb  $\eta_{be,30\%}$  [-] Betriebsbereitschaftsverlust  $q_{bb,Pb}$  [kW/kW]

## Heizkessel oder Therme

nach 1994 Pellets, Hackgut Festbrennstoffkessel, autom. besch., nach 1994 Konstante Betriebsweise Förderschnecke Ja Ja Nein 10,8 (Default) 0,782 (Default) 0,752 (Default) 0,763 (Default) (Default) 0,733 0.0237 (Default)

## Wärmeabgabe

Verbrauchsermittlung Art der Armaturen

Individuelle Verbrauchsermittlung und -abrechnung (Fixwert) Zweigriffarmaturen (Fixwert)

## Wärmeverteilung

Lage der Verteilleitungen Lage der Steigleitungen Dämmung der Verteilleitungen Dämmung der Steigleitungen Armaturen der Verteilleitungen Armaturen der Steigleitungen Zirkulation

Stichleitungen Länge der Verteilleitungen [m] Länge der Steigleitungen [m] Länge der Stichleitungen [m]

Zirkulation Verteilleitungen [m] Zirkulation Steigleitungen [m]

100% beheizt 100% beheizt 3/3 Durchmesser 3/3 Durchmesser Armaturen gedämmt Armaturen gedämmt

Ja Kunststoff

10,29 12,65 15,19 8,53

(Default) (Default) 12,65 (Default)

## Wärmespeicherung

Baujahr des Speichers Art des Speichers Basisanschluss E-Patrone HeizregisterSolar

Speicher im beheizten Bereich Speichervolumen V<sub>TW,WS</sub> [I] Verlust q<sub>b,ws</sub> [kWh/d]

Mittl. Betriebstemperatur ⊖<sub>TW.WS.m</sub> [°C]

ab 1994

Indirekt beheizter Speicher (Öl, Gas, Fest, FW) ab 1994

(Default)

(Default)

Anschlüsse gedämmt Anschluß nicht vorhanden Anschluß gedämmt Nein

442,9

2.69 55,0 (Default) (Default) (Default)

## Wärmebereitstellung (Zentral)

Bereitstellung

Warmwasserbereitung mit Heizung kombiniert

## Solaranlage

Art der Anlage Volumen [i]

Primär Warmwasser, sekundär Heizung

(Default)

(Default)

(Default)

2.000,0

## Solarkollektor

Art des Solarkollektors Vakuum-Röhrenkollektor 24.00 Apertur [m²] Richtungswinkel [°] 180,0 Neigungswinkel [°] 45,0 0,0 Geländewinkel [°] Regelungswirkungsgrad  $\eta_R$  [-] 0,95 0.77

Konversionsrate η<sub>0,Ap</sub> [-] Lin. Verlustfaktor des Kollektors a<sub>1,Ap</sub> [-] 1,90

## Leitungen Kollektorkreis

75% beheizt Lage horizontal 75% beheizt Lage vertikal Dämmung horizontal 3/3 Durchmesser 3/3 Durchmesser Dämmung vertikal 6.56 Länge horizontal [m]

Länge vertikal [m] 22,65



## **RLT Anlage**

Art der Anlage Art des Befeuchter Induktionsanlage RLT-Anlage ohne Heiz- und Kühlfunktion (Lüftungsanlage) Keine Luftbefeuchtung Nein

Kein Kühlsystem vorhanden



## Energiekennzahlen

Projekt: FF OPPONITZ, NEUBAU FEUERWEHRHAUS Datum: 30. August 2011 Blatt 1

Energiekennzahlen: HWB Referenzklima 24,15 **HWB** Standort 26,68 BGF (beheizt) OI3 TGH-IC A/V 316,37 79,99 0,65

kWh/m²a kWh/m²a  $m^2$ 

1/m





## Optionen Heizwärmebedarf gemäß OIB-Richtline 6

Wärmedämmung

| Projekt: FF OPPON                       | IIZ, NEUBAU I           | -EUERWEHRHAUS                     | Datum: 30. August | 2011 Blatt  |
|-----------------------------------------|-------------------------|-----------------------------------|-------------------|-------------|
| Allgemeine Einstel                      |                         |                                   | <b>D</b>          |             |
| Einreichung für                         | ✓ Neubau                | Sanierung                         | Bestand           |             |
| Bauweise                                | leicht                  | mittel                            | schwer            | sehr schwei |
| Wärmebrückenzuschlag                    | vereinfacht<br>19 [W/K] | detailliert lt. Baukörper 0 [W/K] | eingabe           |             |
| Verschattung                            | vereinfacht             | 🗌 detailliert lt. Baukörper       | eingabe           |             |
| Anforderungen: Bestimmung               | ab 1.1.2010             |                                   |                   |             |
| <b>Lüftung:</b><br>Art der Lüftung      | mechanische Lüftu       | ng                                |                   |             |
| Wärmeüberträger<br>(Nichtwohngebäude)   | Plattenwärmeübert       | räger Kreuz-Gegenstrom            |                   |             |
| Rückwärmezahl [-]                       | 0,65                    |                                   |                   |             |
| Rückfeuchtezahl [-]                     |                         |                                   |                   |             |
| Luftwechsel n50 aus<br>Blower-Door-Test | Luftwechselrate n50     | 0 < 0,6/h                         |                   |             |
| Erdwärmetauscher                        | nicht berücksichtigt    |                                   |                   |             |
| Transparente Wärn                       | nedämmung:              |                                   |                   |             |



## Optionen Heizwärmebedarf gemäß OIB-Richtline 6

Projekt: FF OPPONITZ, NEUBAU FEUERWEHRHAUS Datum: 30. August 2011 Blatt 3

| Gebäudetyp / Innere Gewinne:              |                  |              |                      |
|-------------------------------------------|------------------|--------------|----------------------|
| Nutzungsprofil                            | Bürogebäude      |              |                      |
|                                           |                  |              |                      |
| Nutzungstage Jänner                       | d_Nutz,1 [d]     | 23           | (Lt. ÖNORM B 8110-5) |
| Nutzungstage Februar                      | d_Nutz,2 [d]     | 20           | (Lt. ÖNORM B 8110-5) |
| Nutzungstage März                         | d_Nutz,3 [d]     | 23           | (Lt. ÖNORM B 8110-5) |
| Nutzungstage April                        | d_Nutz,4 [d]     | 22           | (Lt. ÖNORM B 8110-5) |
| Nutzungstage Mai                          | d_Nutz,5 [d]     | 23           | (Lt. ÖNORM B 8110-5) |
| Nutzungstage Juni                         | d_Nutz,6 [d]     | 22           | (Lt. ÖNORM B 8110-5) |
| Nutzungstage Juli                         | d_Nutz,7 [d]     | 23           | (Lt. ÖNORM B 8110-5) |
| Nutzungstage August                       | d_Nutz,8 [d]     | 23           | (Lt. ÖNORM B 8110-5) |
| Nutzungstage September                    | d_Nutz,9 [d]     | 22           | (Lt. ÖNORM B 8110-5) |
| Nutzungstage Oktober                      | d_Nutz,10 [d]    | 23           | (Lt. ÖNORM B 8110-5) |
| Nutzungstage November                     | d_Nutz,11 [d]    | 22           | (Lt. ÖNORM B 8110-5) |
| Nutzungstage Dezember                     | d_Nutz,12 [d]    | 23           | (Lt. ÖNORM B 8110-5) |
| Nutzungstage pro Jahr                     | d_Nutz,a [d]     | 269          | (Lt. ÖNORM B 8110-5) |
| Tägliche Nutzungszeit                     | t_Nutz,d [h]     | 12           | (Lt. ÖNORM B 8110-5) |
| Nutzungsstunden zur Tageszeit pro Jahr    | t_Tag,a [h]      | 2970         | (Lt. ÖNORM B 8110-5) |
| Nutzungsstunden zur Nachtzeit pro Jahr    | t_Nacht,a [h]    | 258          | (Lt. ÖNORM B 8110-5) |
| Tägliche Betriebszeit RLT-Anlage          | t_RLT,d [h]      | 14,0         | (Lt. ÖNORM B 8110-5) |
| Betriebstage RLT-Anlage pro Jahr          | d_RLT,a [d]      | 269          | (Lt, ÖNORM B 8110-5) |
| Tägliche Betriebszeit Heizung             | t_h,d [h]        | 14           | (Lt. ÖNORM B 8110-5) |
| Betriebstage Heizung pro Jahr             | d_h,a [d]        | 269          | (Lt. ÖNORM B 8110-5) |
| Tägliche Betriebszeit Kühlung             | t_c,d [h]        | 12           | (Lt. ÖNORM B 8110-5) |
| Betriebstage Kühlung pro Jahr             | d_c,a [d]        | 269          | (Lt. ÖNORM B 8110-5) |
| Innentemperatur Heizfall                  | theta_ih [°C]    | 20           | (Lt. ÖNORM B 8110-5) |
| Innentemperatur Kühlfall                  | theta_ic [°C]    | 26           | (Lt. ÖNORM B 8110-5) |
| Temperatur unkonditionierter Raum         | theta_iu [°C]    | 13           | (Lt. ÖNORM B 8110-5) |
| Feuchteanforderung                        | x [-]            | mit Toleranz | (Lt. ÖNORM B 8110-5) |
| Luftwechselrate RLT                       | n_L,RLT [1/h]    | 2,00         | (Lt. ÖNORM B 8110-5) |
| Luftwechselrate Fensterlüftung            | n_L,FL [1/h]     | 1,20         | (Lt. ÖNORM B 8110-5) |
| Luftwechselrate Nachtlüftung              | n_L,NL [1/h]     | 1,50         | (Lt. ÖNORM B 8110-5) |
| Beleuchtungsstärke                        | E_m [lux]        | 380          | (Lt. ÖNORM B 8110-5) |
| Innere Gewinne Heizfall (bezogen auf      | q_i,h,n [W/m²]   | 3,75         | (Lt. ÖNORM B 8110-5) |
| Bezugsfläche BF)                          |                  |              |                      |
| Innere Gewinne Kühlfall (bezogen auf      | q_i,c,n [W/m²]   | 7,50         | (Lt. ÖNORM B 8110-5) |
| Bezugsfläche BF)                          |                  |              |                      |
| Tägl. Warmwasser-Wärmebedarf (bezogen auf | wwwb [Wh/(m²-d)] | 17,5         | (Lt. ÖNORM B 8110-5) |
| Bezugsfläche BF)                          |                  |              |                      |
|                                           |                  |              |                      |





## Optionen Heizwärmebedarf gemäß OIB-Richtline 6

| Projekt: <b>FF OPPONI</b>                                                       | TZ, NEUBAU FEUERWEHRHAUS                                                                                                             | Datum: 30. August 2011 | Blatt 4                                      |
|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------------------------------------------|
| Beleuchtungsenerg<br>Ermittlung LENI-Wert                                       | iebedarf Nichtwohngebäude:<br>Benchmark-Wert nach ÖNORM H 5059 Tabelle 6                                                             |                        | 400 00 00 000                                |
| Benchmark-Wert [kWh/m²]                                                         | 32,2                                                                                                                                 |                        |                                              |
| Flächenheizung: Flächenheizung Vorlauftemperatur bei Normalaußentemperatur [°C] | berücksichtigt<br>35                                                                                                                 |                        |                                              |
| Rücklauftemperatur bei<br>Normalaußentemperatur<br>[°C]                         | Bauteil                                                                                                                              | Flächenheizung         | R-Wert                                       |
|                                                                                 | AW01 Ziegel VWS 20 cm<br>IW 01<br>FB 01 Fussboden KDO<br>FD 01 Flachdach KDO 25 cm<br>AW05 Sockel 20 cm<br>FD 02 Flachdach KDO 20 cm |                        | 7,24<br>2,87<br>8,08<br>9,09<br>5,82<br>9,07 |

Optionen Kühlbedarf:
Bewegliche Sonnenschutzeinrichtung

keine Verschattung

Steuerung Sonnenschutzeinrichtung

manuell/zeitgesteuert

Oberfläche Gebäude

weiße Oberfläche



## Ol3-Index

| Projekt: FF OPPONITZ, NEUBAU FEUERWEHRHAUS | Datum: 30. August 2011 | Blatt 5 |
|--------------------------------------------|------------------------|---------|
|--------------------------------------------|------------------------|---------|

| Bauteile                                              |                            | Fläche<br>A | Wärmed.<br>koeffiz<br>U | PEI                | GWP       | AP                 |
|-------------------------------------------------------|----------------------------|-------------|-------------------------|--------------------|-----------|--------------------|
|                                                       |                            | [m²]        | [W/m²K]                 | [MJ]               | [kg CO2]  | [kg SO2]           |
| AW01 Ziegel VWS 20 cm                                 | Außenwand                  | 233,99      | 0.13                    | 284.020,1          | 14.344.2  | 62.0               |
| FB 01 Fussboden KDO                                   | erdanliegender<br>Fußboden | 316,37      | 0,12                    | 730.399,8          | 52.053,1  | 213,5              |
| FD 01 Flachdach KDO 25 cm                             | Dach ohne Hinterlüftung    | 237,85      | 0,11                    | 495.143,3          | 32.122,3  | 158,5              |
| AW05 Sockel 20 cm                                     | erdanliegende Wand         | 33,54       | 0,17                    | 39.399,8           | 3.607,4   | 13,8               |
| FD 02 Flachdach KDO 20 cm                             | Dach ohne Hinterlüftung    | 74,21       | 0,11                    | 144.061,5          | 8.662,9   | 44,8               |
| IW 01                                                 | Innenwand                  | 56,16       | 0,32                    | 60.231,3           | 4.303,0   | 13,8               |
| AF 02 1,10/3,00m U=1,11                               |                            | 3,30        | 1,11                    | 5.031,7            | 222,6     | 1,6                |
| AF 05 1,65/2,10m U=1,15                               |                            | 3,47        | 1,15                    | 5.838,1            | 258,4     | 1,8                |
| AF 01 1,10/3,55m U=1,12                               |                            | 19,53       | 1,12                    | 30.695,6           | 1.358,0   | ( 3                |
| AF 03 1,10/2,10m U=1,12                               |                            | 6,93        | 1,12                    | 11.676,2           | 516,7     |                    |
| AF 04 2.75/2,10m U=1,14                               |                            | 5,78        | 1,14                    | 8.908.2            | 394,1     | 2,9                |
| AT 01 2.50/2.80m U=1.39                               |                            | 7,00        | 1,39                    | 7.322.1            | 163.5     | 2,5                |
| AF 10 1.00/0.70m U=1.15                               |                            | 4,20        | 1,15                    | 9.567,0            | 424.0     | 2,9                |
| LK 1.20/1.20m U=1.52                                  |                            | 4,32        | 1,41                    | 10.720,3           | 439.5     | 3,1                |
| IF 01 1,50/1,40m U=2,10                               |                            | 2,10        | 2,10                    | 2.620,8            | 150.7     | 0,9                |
| IT 01 1,20/2,20m U=2,50                               |                            | 5,28        | 2,50                    | 5.681,3            | -160.5    | 1,2                |
| Summe                                                 |                            | 1.014,01    |                         | 1.851.317,0        | 118.859,7 | 536,7              |
| Cullinio                                              |                            |             |                         | ,.                 | ,         | ,                  |
| PEI(Primärenergiegehalt nicht                         | t erneuerbar)              |             |                         | [MJ/m² k<br>Punkte | (OF]      | 1.825,74<br>100,00 |
| GWP (Global Warming Potent                            | ial\                       |             |                         |                    | /m² KOF]  | 117,22             |
| GWP (Global Walling Potent                            | iai)                       |             |                         | Punkte             |           | 83,61              |
| AP (Versäuerung)                                      |                            |             |                         |                    | m² KOF]   | 0,53               |
|                                                       |                            |             |                         | Punkte             |           | 100,00             |
| OI3-TGH<br>OI3-TGH=(1/3.PEI + 1/3.GWP +               | + 1/3.AP)                  |             |                         | Punkte             |           | 94,54              |
| Ol3-lc (Ökoindikator)<br>Ol3-lc= 3 * Ol3-TGH / (2+lc) |                            |             |                         | Punkte             |           | 79,99              |
| OI3-TGHBGF<br>OI3-TGHBGF= OI3-TGH * KOF               | : / BGF                    |             |                         | Punkte             |           | 303,00             |
|                                                       |                            |             |                         |                    |           |                    |
|                                                       |                            |             |                         |                    |           |                    |
| KOF                                                   |                            |             |                         | m²                 |           | •                  |
| KOF<br>BGF                                            |                            |             |                         | m²<br>m²           |           | 1014,01<br>316,37  |





Ol3-Index

Projekt: FF OPPONITZ, NEUBAU FEUERWEHRHAUS

Datum: 30. August 2011

Blatt 6



## **OI3-Index**

Projekt: FF OPPONITZ, NEUBAU FEUERWEHRHAUS Datum: 30. August 2011 Blatt 7

|    | Schichtbezeichnung<br>Ol3-Bezeichnung                                                                                                          | Lambda<br>[W/mK] | Dichte<br>[kg/m³] | im Bauteil                                                                                                                                                                                                                                                                 |
|----|------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2) | Capatect SH-Reibputz                                                                                                                           | 0,700            |                   | AW01 Ziegel VWS 20 cm                                                                                                                                                                                                                                                      |
| 2) | zugeordnet: Silikonharzputz Capatect Klebe-u.Spachtelmasse 190                                                                                 | 0,900            | 1.200             | AW01 Ziegel VWS 20 cm                                                                                                                                                                                                                                                      |
| 2) | zugeordnet: Kleber - Kunstharzkleber Capatect Lambdapor Dämmplatte zugeordnet: Polystyrol (EPS f. Wärmedämmverbundsysteme WDVS)                | 0,040            | 18                | AW05 Sockel 20 cm<br>AW01 Ziegel VWS 20 cm                                                                                                                                                                                                                                 |
| 2) | POROTHERM 25-38 N+F zugeordnet: Ziegel - Hochlochziegel porosiert <=800kg/m³                                                                   | 0,250            | 800               | AW01 Ziegel VWS 20 cm                                                                                                                                                                                                                                                      |
| 2) | Baumit MPI 25 zugeordnet: Kalk-Zementputz                                                                                                      | 1,000            | 1.800             | AW01 Ziegel VWS 20 cm<br>IW 01                                                                                                                                                                                                                                             |
| 2) | Keramische Beläge zugeordnet: Keramische Beläge                                                                                                | 1,200            | 2.000             | FB 01 Fussboden KDO                                                                                                                                                                                                                                                        |
| 2) | Zementestrich                                                                                                                                  | 1,330            | 2.000             | FB 01 Fussboden KDO                                                                                                                                                                                                                                                        |
| 2) | zugeordnet: Zementestrich<br>Polyethylenbahn                                                                                                   | 0,500            | 980               | FB 01 Fussboden KDO                                                                                                                                                                                                                                                        |
| 2) | zugeordnet: Polyethylenbahn<br>steinothan 107 / FD PUR-Dämmplatte ab 01.04.10<br>zugeordnet: steinothan 107 / FD PUR-Dämmplatte ab<br>01.04.10 | 0,023            | 30                | FB 01 Fussboden KDO                                                                                                                                                                                                                                                        |
| 2) | Polystyrol EPS-Granulat zementgebunden <125 kg/m³ zugeordnet: Polystyrol EPS-Granulat zementgebunden <125 kg/m³                                | 0,060            | 125               | FB 01 Fussboden KDO                                                                                                                                                                                                                                                        |
| 2) | Polymerbitumen-Dichtungsbahn<br>zugeordnet: Polymerbitumen-Dichtungsbahn                                                                       | 0,230            | 1.100             | FB 01 Fussboden KDO                                                                                                                                                                                                                                                        |
| 2) | Stahlbeton<br>zugeordnet: Stahlbeton                                                                                                           | 2,500            | 2.400             | FB 01 Fussboden KDO<br>FD 01 Flachdach KDO 25 cm<br>AW05 Sockel 20 cm                                                                                                                                                                                                      |
| 2) | Sand, Kies feucht 20%                                                                                                                          | 0,700            | 1.800             | FD 02 Flachdach KDO 20 cm<br>FD 01 Flachdach KDO 25 cm<br>FD 02 Flachdach KDO 20 cm                                                                                                                                                                                        |
| 2) | zugeordnet: Sand, Kies feucht 20% EPDM Baufolie, Gummi                                                                                         | 0,170            | 1.200             | FD 01 Flachdach KDO 25 cm<br>FD 02 Flachdach KDO 20 cm                                                                                                                                                                                                                     |
| 2) | zugeordnet: EPDM Baufolie, Gummi Polystyrol EPS 25 zugeordnet: Polystyrol EPS 25                                                               | 0,036            | 25                | FD 01 Flachdach KDO 25 cm<br>FD 02 Flachdach KDO 20 cm                                                                                                                                                                                                                     |
| 2) | Villaself SKB-Plus zugeordnet: Polymerbitumen-Dichtungsbahn                                                                                    | 0,230            | 1.100             | FD 01 Flachdach KDO 25 cm<br>FD 02 Flachdach KDO 20 cm                                                                                                                                                                                                                     |
| 2) | Capatect Sockeldämmplatte zugeordnet: Polystyrol (EPS f. Wärmedämmverbundsysteme WDVS)                                                         | 0,040            | 18                | AW05 Sockel 20 cm                                                                                                                                                                                                                                                          |
| 2) | Baumit MPI 20 zugeordnet: Kalkgipsputz                                                                                                         | 0,700            | 1.300             | IW 01                                                                                                                                                                                                                                                                      |
| 2) | POROTHERM 25-38 N+F zugeordnet: Ziegel - Hochlochziegel porosiert <=800kg/m³                                                                   | 0,250            | 800               | IW 01                                                                                                                                                                                                                                                                      |
| 2) | TRENNFUGENPLATTEN TRFP 30 zugeordnet: Steinwolle roh <= 25 kg/m³                                                                               | 0,043            | 25                | IW 01                                                                                                                                                                                                                                                                      |
| 2) | Verglasung Light 4b/16Ar/b4 Ug 1,0<br>zugeordnet: 2-fach-Wärmeschutzglas low beschichtet<br>(4-16-4 Ar)                                        | 0,013            | -                 | AF 02 1,10/3,00m U=1,11<br>AF 05 1,65/2,10m U=1,15<br>AF 01 1,10/3,55m U=1,12                                                                                                                                                                                              |
| 2) | dimension+ Uf 1,0 W/m²K 3fach Aufbau<br>zugeordnet: Kunststoff-Hohlprofile (5 Kam., d<br>>70mm)+Aluschale                                      | 0,015            | -                 | AF 03 1,10/2,10m U=1,12<br>AF 04 2,75/2,10m U=1,14<br>AT 01 2,50/2,80m U=1,39<br>AF 10 1,00/0,70m U=1,15<br>AF 02 1,10/3,00m U=1,11<br>AF 05 1,65/2,10m U=1,15<br>AF 01 1,10/3,55m U=1,12<br>AF 03 1,10/2,10m U=1,12<br>AF 04 2,75/2,10m U=1,14<br>AF 10 1,00/0,70m U=1,15 |
| 1) | Schüco Aluminium hochwärmegedämmt zugeordnet: Hochwärmedämmender Alu Rahmen                                                                    | 0,011            | -                 | AT 01 2,50/2.80m U=1,39                                                                                                                                                                                                                                                    |





## Ol3-Index

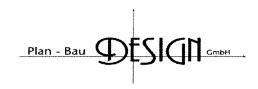
Projekt: **FF OPPONITZ, NEUBAU FEUERWEHRHAUS** 

Datum: 30. August 2011 Blatt 8

|    | Schichtbezeichnung<br>Ol3-Bezeichnung                                                                                         | Lambda<br>[W/mK] | Dichte<br>[kg/m³] | im Bauteil                                      |
|----|-------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------|-------------------------------------------------|
| 2) | Zweifach-Wärmeschutzglas low beschichtet 4-16-4 (Ar) (Ug 1,25) zugeordnet: 2-fach-Wärmeschutzglas low beschichtet (4-16-4 Ar) | 0,013            |                   | LK 1,20/1,20m U=1,52<br>IF 01 1,50/1,40m U=2,10 |
| 2) | PVC-Hohlprofile 5 Kammern (Uf 1,3) zugeordnet: Kunststoff-Hohlprofil (d > 70 mm)                                              | 0,014            | -                 | LK 1,20/1,20m U=1,52                            |
| 2) | Metallrahmen mit thermischer Trennung (Uf 4,0) zugeordnet: Metallrahmen ALU (mit thermischer Trennung)                        | 0,040            | <del>-</del>      | IF 01 1,50/1,40m U=2,10                         |
| 2) | Innentür Standard<br>zugeordnet: Innentür gegen Pufferraum (Holz, lackiert)                                                   | 0,160            | 700               | IT 01 1,20/2,20m U=2,50                         |

Diese Baustoffe stammen aus dem benutzereigenen Baustoffkatalog
 Diese Baustoffe stammen aus dem ECOTECH-Baustoffkatalog.




## Fenster und Türen im Baukörper - kompakt

Projekt: FF OPPONITZ, NEUBAU FEUERWEHRHAUS

Blatt 9 Datum: 30. August 2011

Legende Ausricht /Neig = Ausrichtung / Neigung (\*). Breite = Architektunlichte Breite, Höhe = Architektunlichte Höhe, Fläche = Gesamtfläche(außen), Ug = U-Wert des Glases, Uf = U-Wert des Rahmens, PSI = PSI-Wert, Ig = Länge d. Glassrandverbundes (pro Fenster), Uw =

| Legende: Ausric<br>gesamter U-Wei<br>(Glasfläche*gw*i | Legende: Ausront, Neig = Ausrontung / Neigung   j.pf.efte = Archiekturintie bietet, Frore = Archiekturintie bietet, France = Gesamter U-Wert des Fensters, AxU = Flache mai U-Wert, Ag = Anteil Glasflache, g = Gesamtenergiedurchlaßgradfg-wert) It Bauteit, (Glasflache*gw*fs), Qs = solare Warmegewinner, Ant. Qs = Anteil an den gesamten solaren Warmegewinnen, Qt = Transmissionswäm | tuniche brene,<br>I Glasfläche, g =<br>Ien gesamten sc | norre - Aron<br>- Gesamtene<br>olaren Wärm | rgiedurchlaß<br>egewinnen, C   | grad(g-wert) It<br>t = Transmiss | vert) it Bauteii, gw = wirki | wirksamer Ge<br>Iuste | samtenergie            | durchlaßgrad                                       | (9* 0.9 * 0.98)                | fs = Versch             | attungsfak           | tor (Winter/S        | granding of the control of the contr | = wirksame F         | läche                           |                               |
|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------|--------------------------------|----------------------------------|------------------------------|-----------------------|------------------------|----------------------------------------------------|--------------------------------|-------------------------|----------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------------------------|-------------------------------|
| Ausricht.<br>Neig.                                    | Anz Bezeichnung                                                                                                                                                                                                                                                                                                                                                                            | Breite Höhe<br>[m] [m]                                 | Höhe<br>[m]                                | Fläche<br>[m²]                 | lache Ug<br>[m²] [W/m²K]         | Uf<br>[W/m²K]                | PSI<br>[W/mK]         | ÐΈ                     | Uw<br>[W/m²K]                                      | AxU<br>[W/K]                   | Ag<br>[%]               | pΞ                   | %g ⊡                 | \$ 🗆                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Awirk<br>[m²]        | Qs<br>[kWh/a]                   | Ant.Qs<br>[%]                 |
|                                                       | SÜDOSTEN                                                                                                                                                                                                                                                                                                                                                                                   |                                                        |                                            |                                |                                  |                              |                       |                        |                                                    |                                |                         |                      |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                 |                               |
| 135/90<br>135/90<br>135/90<br>SUM                     | 5 AF 01 1,10/3,55m U=1,12<br>3 AF 03 1,10/2,10m U=1,12<br>1 AF 04 2,75/2,10m U=1,14<br>9                                                                                                                                                                                                                                                                                                   | 1,10<br>1,10<br>2,75                                   | 3,55<br>2,10<br>2,10                       | 19,53<br>6,93<br>5,78<br>32,24 | 0000                             | 00,00                        | 0,040                 | 11,70<br>7,20<br>20,20 | 2, 1, 1, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, | 21,87<br>7,76<br>6,58<br>36,21 | 72,60<br>70,13<br>73,25 | 0,55<br>0,55<br>0,55 | 0,49<br>0,49<br>0,49 | 0,75<br>0,75<br>0,75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5,16<br>1,77<br>1,54 | 4030<br>1382<br>1203<br>6615,00 | 40,5<br>13,9<br>12,1<br>66,55 |
|                                                       | NORDOSTEN                                                                                                                                                                                                                                                                                                                                                                                  |                                                        |                                            |                                |                                  |                              | ******                |                        |                                                    |                                |                         |                      |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                 |                               |
| 45/90<br>45/90<br>SUM                                 | 1 AF 02 1,10/3,00m U=1,11<br>1 AF 05 1,65/2,10m U=1,15<br>2                                                                                                                                                                                                                                                                                                                                | 1,10                                                   | 3,00                                       | 3,30<br>3,47<br>6,77           | 1,00                             | 00,1                         | 0,040                 | 9,00                   | <u>- 1</u>                                         | 3,66<br>3,98<br>7,64           | 73,64<br>70,13          | 0,55                 | 0,49<br>9,49         | 0,75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0,88                 | 423<br>423<br>846,61            | 4,3<br>4,3<br>8,52            |
|                                                       | SÜDWESTEN                                                                                                                                                                                                                                                                                                                                                                                  |                                                        |                                            |                                |                                  |                              |                       |                        |                                                    |                                |                         |                      |                      | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                                 |                               |
| 225/90<br>SUM                                         | 1 AT 01 2,50/2,80m U=1,39                                                                                                                                                                                                                                                                                                                                                                  | 2,50                                                   | 2,80                                       | 2,00                           | 1,00                             | 1,40                         | 0,080                 | 21,70                  | 1,39                                               | 9,73<br>9,73                   | 63,79                   | 0,55                 | 0,49                 | 0,75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,62                 | 1270<br>1269,55                 | 12,8<br>12,77                 |
|                                                       | NORDWESTEN                                                                                                                                                                                                                                                                                                                                                                                 |                                                        |                                            |                                |                                  |                              |                       |                        |                                                    |                                |                         |                      |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                 |                               |
| 315/90<br>SUM                                         | 6 AF 10 1,00/0,70m U=1,15<br>6                                                                                                                                                                                                                                                                                                                                                             | 1,00                                                   | 0,70                                       | 4,20                           | 1,00                             | 1,00                         | 0,040                 | 2,60                   | 1,15                                               | 4 4<br>83<br>83                | 57,14                   | 0,55                 | 0,49                 | 0,75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 28'0                 | 418<br>418,08                   | 4,21                          |





## Globalstrahlungssummen

Projekt: FF OPPONITZ, NEUBAU FEUERWEHRHAUS Datum: 30. August 2011

Blatt 10

Beiblatt: 1 a

## Standardisierte Klimadaten: (Referenzklima)

Monatliche mittlere Außentemperaturen und monatliche mittlere Globalstrahlungssummen in kWh/m².

|           | °C   | Hori-<br>zontal | Süd    | Südost | Ost    | Nordost | Nord   | Nordwes<br>t | West   | Südwest | Dauer<br>[Tage] |
|-----------|------|-----------------|--------|--------|--------|---------|--------|--------------|--------|---------|-----------------|
| Jänner    | -1,5 | 107,24          | 142,67 | 115,02 | 70,24  | 49,61   | 47,20  | 49,61        | 70,24  | 115,02  | 31,00           |
| Februar   | 0,7  | 185,11          | 216,58 | 178,16 | 115,70 | 81,43   | 75,89  | 81,43        | 115,70 | 178,16  | 28,00           |
| März      | 4,8  | 300,24          | 282,20 | 247,68 | 187,63 | 126,11  | 102,10 | 126,11       | 187,63 | 247,68  | 31,00           |
| April     | 9,6  | 406,12          | 284,26 | 278,17 | 243,65 | 182,74  | 142,13 | 182,74       | 243,65 | 278,17  | 30,00           |
| Mai       | 14,2 | 552,10          | 314,68 | 329,87 | 317,45 | 252,58  | 198,76 | 252,58       | 317,45 | 329,87  | 31,00           |
| Juni      | 17,3 | 558,79          | 279,40 | 310,14 | 318,53 | 266,83  | 212,36 | 266,83       | 318,53 | 310,14  | 30,00           |
| Juli      | 19,1 | 578,09          | 294,84 | 330,95 | 335,30 | 273,13  | 213,88 | 273,13       | 335,30 | 330,95  | 31,00           |
| August    | 18,6 | 498,60          | 314,10 | 322,85 | 294,16 | 215,64  | 159,55 | 215,64       | 294,16 | 322,85  | 31,00           |
| September | 15,0 | 356,29          | 295,70 | 269,89 | 217,33 | 155,88  | 128,27 | 155,88       | 217,33 | 269,89  | 30,00           |
| Oktober   | 9,6  | 231,66          | 252,50 | 212,54 | 147,10 | 96,73   | 85,72  | 96,73        | 147,10 | 212,54  | 31,00           |
| November  | 4,2  | 113,26          | 150,66 | 120,06 | 72,50  | 50,11   | 47,56  | 50,11        | 72,50  | 120,06  | 30,00           |
| Dezember  | 0,2  | 80,39           | 123,80 | 96,88  | 52,67  | 35,78   | 34,56  | 35,78        | 52,67  | 96,88   | 31,00           |

## **Standortbezogene Klimadaten:** (Opponitz)

Monatliche mittlere Außentemperaturen und monatliche mittlere Globalstrahlungssummen in kWh/m².

|           | °C   | Hori-<br>zontal | Süd    | Südost | Ost    | Nordost | Nord   | Nordwes<br>t | West   | Südwest | Dauer<br>[Tage] |
|-----------|------|-----------------|--------|--------|--------|---------|--------|--------------|--------|---------|-----------------|
| Jänner    | -2,0 | 108,08          | 166,44 | 129,69 | 71,33  | 45,39   | 42,15  | 45,39        | 71,33  | 129,69  | 31,00           |
| Februar   | -0,2 | 180,25          | 227,11 | 183,85 | 113,56 | 72,10   | 64,89  | 72,10        | 113,56 | 183,85  | 28,00           |
| März      | 3,6  | 297,01          | 285,13 | 249,49 | 187,12 | 121,77  | 98,01  | 121,77       | 187,12 | 249,49  | 31,00           |
| April     | 8,0  | 398,13          | 278,69 | 274,71 | 238,88 | 179,16  | 139,34 | 179,16       | 238,88 | 274,71  | 30,00           |
| Mai       | 12,6 | 531,15          | 292,13 | 313,38 | 308,07 | 244,33  | 191,21 | 244,33       | 308,07 | 313,38  | 31,00           |
| Juni      | 15,7 | 519,81          | 254,71 | 291,10 | 296,29 | 249,51  | 197,53 | 249,51       | 296,29 | 291,10  | 30,00           |
| Juli      | 17,5 | 549,89          | 280,44 | 313,43 | 318,93 | 258,45  | 203,46 | 258,45       | 318,93 | 313,43  | 31,00           |
| August    | 16,9 | 487,90          | 302,50 | 317,13 | 292,74 | 219,55  | 161,01 | 219,55       | 292,74 | 317,13  | 31,00           |
| September | 13,8 | 356,84          | 296,17 | 271,20 | 221,24 | 157,01  | 128,46 | 157,01       | 221,24 | 271,20  | 30,00           |
| Oktober   | 8,7  | 231,58          | 266,32 | 222,32 | 148,21 | 92,63   | 78,74  | 92,63        | 148,21 | 222,32  | 31,00           |
| November  | 3,2  | 119,45          | 176,78 | 138,56 | 77,64  | 48,97   | 46,58  | 48,97        | 77,64  | 138,56  | 30,00           |
| Dezember  | -0,8 | 82,89           | 140,91 | 108,58 | 55,53  | 34,81   | 33,15  | 34,81        | 55,53  | 108,58  | 31,00           |



## Wärmebedarf Standort

Projekt: FF OPPONITZ, NEUBAU FEUERWEHRHAUS Datum: 30. August 2011

Blatt 11

## Monatliche Berechnung des Wärmebedarfs:

| Standort        | Opponitz |      |
|-----------------|----------|------|
| Klimaregion     | NF       |      |
| Seehöhe         | 422      | m    |
| LT              | 189,1068 | W/K  |
| LV              | 43,80912 | W/K  |
| Innentemperatur | 20       | °C   |
| t Heiz,d        | 14       | h/d  |
| a ihn           | 3,75     | W/m² |
| BGF             | 316,37   | m²   |
| C               | 29377,2  |      |

| Monate | Trans<br>verluste<br>[kWh/a] | Lüft<br>verluste<br>[kWh/a] | Wärme-<br>verluste<br>[kWh/a] | Innere<br>Gewinne<br>[kWh/a] | Solare<br>Gewinne<br>[kWh/a] | Gesamt-<br>gewinne<br>[kWh/a] | Gewinn/<br>verlust<br>Verhältn. | Nutz<br>grad | Bedarf<br>[kWh/a] |
|--------|------------------------------|-----------------------------|-------------------------------|------------------------------|------------------------------|-------------------------------|---------------------------------|--------------|-------------------|
| Jan    | 3101                         | 718                         | 3820                          | 1142                         | 419                          | 1561                          | 0,41                            | 1,00         | 2259,5            |
| Feb    | 2564                         | 576                         | 3140                          | 1017                         | 605                          | 1622                          | 0,52                            | 1,00         | 1520,9            |
| Mar    | 2302                         | 533                         | 2835                          | 1142                         | 849                          | 1991                          | 0,70                            | 0,99         | 870,5             |
| Apr    | 1631                         | 374                         | 2006                          | 1100                         | 983                          | 2083                          | 1,04                            | 0,88         | 170,4             |
| Mai    | 1040                         | 241                         | 1281                          | 1142                         | 1166                         | 2308                          | 1,80                            | 0,55         | 3,1               |
| Jun    | 589                          | 135                         | 725                           | 1100                         | 1105                         | 2205                          | 3,04                            | 0,33         | 0,0               |
| Jul    | 358                          | 83                          | 441                           | 1142                         | 1181                         | 2322                          | 5,26                            | 0,19         | 0,0               |
| Aug    | 431                          | 100                         | 531                           | 1142                         | 1150                         | 2291                          | 4,31                            | 0,23         | 0,0               |
| Sep    | 847                          | 194                         | 1041                          | 1100                         | 948                          | 2048                          | 1,97                            | 0,51         | 1,2               |
| Okt    | 1587                         | 368                         | 1954                          | 1142                         | 738                          | 1880                          | 0,96                            | 0,92         | 233,4             |
| Nov    | 2290                         | 526                         | 2815                          | 1100                         | 449                          | 1549                          | 0,55                            | 1,00         | 1269,9            |
| Dez    | 2922                         | 677                         | 3599                          | 1142                         | 347                          | 1488                          | 0,41                            | 1,00         | 2110,5            |
| Summe  | 19662                        | 4526                        | 24188                         | 13408                        | 9940                         | 23347                         | 0,97                            | 0,67         | 8439              |

|        | 0e    | T      | а    |
|--------|-------|--------|------|
| Monate |       |        |      |
|        | [°C]  | [h]    | [-]  |
| Jan    | -2,04 | 126,13 | 8,88 |
| Feb    | -0,18 | 126,84 | 8,93 |
| Mar    | 3,64  | 126,13 | 8,88 |
| Apr    | 8,02  | 126,35 | 8,90 |
| Mai    | 12,61 | 126,13 | 8,88 |
| Jun    | 15,67 | 126,35 | 8,90 |
| Jul    | 17,45 | 126,13 | 8,88 |
| Aug    | 16,93 | 126,13 | 8,88 |
| Sep    | 13,78 | 126,35 | 8,90 |
| Okt    | 8,72  | 126,13 | 8,88 |
| Nov    | 3,18  | 126,35 | 8,90 |
| Dez    | -0,77 | 126,13 | 8,88 |

Der flächenbezogene Heizwärmebedarf beträgt: 27 [kWh/(m²a)]





## Wärmebedarf Referenzstandort

Projekt: FF OPPONITZ, NEUBAU FEUERWEHRHAUS Datum: 30. August 2011

Blatt 12

## Monatliche Berechnung des Wärmebedarfs:

| Standort        | Referenzklima |      |
|-----------------|---------------|------|
| Klimaregion     | NF            |      |
| Seehöhe         | 0             | m    |
| LT              | 189,0459      | W/K  |
| LV              | 43,80912      | W/K  |
| Innentemperatur | 20            | °C   |
| t Heiz,d        | 14            | h/d  |
| g ihn           | 3,75          | W/m² |
| BGF             | 316,37        | m²   |
| C               | 29377,2       | Wh/K |

| Monate | Trans<br>verluste<br>[kWh/a] | Lüft<br>verluste<br>[kWh/a] | Wärme-<br>verluste<br>[kWh/a] | Innere<br>Gewinne<br>[kWh/a] | Solare<br>Gewinne<br>[kWh/a] | Gesamt-<br>gewinne<br>[kWh/a] | Gewinn/<br>verlust<br>Verhältn. | Nutz<br>grad | Bedarf<br>[kWh/a] |
|--------|------------------------------|-----------------------------|-------------------------------|------------------------------|------------------------------|-------------------------------|---------------------------------|--------------|-------------------|
| Jan    | 3028                         | 702                         | 3730                          | 1142                         | 381                          | 1522                          | 0,41                            | 1,00         | 2207,9            |
| Feb    | 2448                         | 550                         | 2999                          | 1017                         | 597                          | 1613                          | 0,54                            | 1,00         | 1388,0            |
| Mar    | 2136                         | 495                         | 2632                          | 1142                         | 848                          | 1990                          | 0,76                            | 0,98         | 685,1             |
| Apr    | 1413                         | 324                         | 1737                          | 1100                         | 997                          | 2097                          | 1,21                            | 0,80         | 66,2              |
| Mai    | 816                          | 189                         | 1005                          | 1142                         | 1223                         | 2364                          | 2,35                            | 0,42         | 0,3               |
| Jun    | 363                          | 83                          | 447                           | 1100                         | 1179                         | 2279                          | 5,10                            | 0,20         | 0,0               |
| Jul    | 124                          | 29                          | 152                           | 1142                         | 1246                         | 2388                          | 15,66                           | 0,06         | 0,0               |
| Aug    | 203                          | 47                          | 249                           | 1142                         | 1165                         | 2307                          | 9,25                            | 0,11         | 0,0               |
| Sep    | 676                          | 155                         | 832                           | 1100                         | 944                          | 2044                          | 2,46                            | 0,41         | 0,2               |
| Okt    | 1457                         | 338                         | 1795                          | 1142                         | 714                          | 1856                          | 1,03                            | 0,88         | 155,9             |
| Nov    | 2156                         | 495                         | 2651                          | 1100                         | 396                          | 1496                          | 0,56                            | 1,00         | 1158,7            |
| Dez    | 2786                         | 646                         | 3432                          | 1142                         | 314                          | 1456                          | 0,42                            | 1,00         | 1976,5            |
| Summe  | 17607                        | 4054                        | 21661                         | 13408                        | 10004                        | 23412                         | 1,08                            | 0,60         | 7639              |

|        | 0e    | T .    | а    |
|--------|-------|--------|------|
| Monate | F0.01 | F1 3   |      |
|        | [°C]  | [h]    | E]   |
| Jan    | -1,53 | 126,16 | 8,89 |
| Feb    | 0,73  | 126,87 | 8,93 |
| Mar    | 4,81  | 126,16 | 8,89 |
| Apr    | 9,62  | 126,38 | 8,90 |
| Mai    | 14,20 | 126,16 | 8,89 |
| Jun    | 17,33 | 126,38 | 8,90 |
| Jul    | 19,12 | 126,16 | 8,89 |
| Aug    | 18,56 | 126,16 | 8,89 |
| Sep    | 15,03 | 126,38 | 8,90 |
| Okt    | 9,64  | 126,16 | 8,89 |
| Nov    | 4,16  | 126,38 | 8,90 |
| Dez    | 0,19  | 126,16 | 8,89 |

Der flächenbezogene Heizwärmebedarf beträgt: 24 [kWh/(m²a)]



## Kühlbedarf Standort

Projekt: FF OPPONITZ, NEUBAU FEUERWEHRHAUS Datum: 30. August 2011 Blatt 13

## Monatliche Berechnung des Kühlbedarfs:

| Standort        | Opponitz |      |
|-----------------|----------|------|
| Klimaregion     | NF       |      |
| Seehöhe         | 422      | m    |
| LT              | 189,1068 | W/K  |
| LV              | 82,96307 | W/K  |
| Innentemperatur | 26       | °C   |
| t c.d           | 12       | h/d  |
| a icn           | 7,5      | W/m² |
| BGF             | 316,37   | m²   |
| C               | 29377,2  |      |

| Monate | Trans<br>verluste<br>[kWh/a] | Lüft<br>verluste<br>[kWh/a] | Wärme-<br>verluste<br>[kWh/a] | Innere<br>Gewinne<br>[kWh/a] | Solare<br>Gewinne<br>[kWh/a] | Gesamt-<br>gewinne<br>[kWh/a] | Gewinn/<br>verlust<br>Verhältn. | Nutz<br>grad | Bedarf<br>[kWh/a] |
|--------|------------------------------|-----------------------------|-------------------------------|------------------------------|------------------------------|-------------------------------|---------------------------------|--------------|-------------------|
| Jan    | 3945                         | 1731                        | 5676                          | 2283                         | 558                          | 2842                          | 0,50                            | 1,00         | 8,2               |
| Feb    | 3326                         | 1436                        | 4763                          | 2033                         | 807                          | 2840                          | 0,60                            | 0,99         | 25,2              |
| Mar    | 3146                         | 1380                        | 4526                          | 2283                         | 1132                         | 3416                          | 0,75                            | 0,97         | 126,2             |
| Apr    | 2448                         | 1069                        | 3517                          | 2200                         | 1310                         | 3510                          | 1,00                            | 0,89         | 484,7             |
| Mai    | 1884                         | 827                         | 2711                          | 2283                         | 1555                         | 3838                          | 1,42                            | 0,69         | 1444,5            |
| Jun    | 1406                         | 614                         | 2020                          | 2200                         | 1474                         | 3673                          | 1,82                            | 0,55         | 2025,3            |
| Jul    | 1203                         | 528                         | 1730                          | 2283                         | 1574                         | 3857                          | 2,23                            | 0,45         | 2598,0            |
| Aug    | 1275                         | 560                         | 1835                          | 2283                         | 1533                         | 3816                          | 2,08                            | 0,48         | 2421,5            |
| Sep    | 1664                         | 726                         | 2390                          | 2200                         | 1264                         | 3464                          | 1,45                            | 0,68         | 1361,8            |
| Okt    | 2431                         | 1066                        | 3497                          | 2283                         | 985                          | 3268                          | 0,93                            | 0,91         | 345,4             |
| Nov    | 3107                         | 1356                        | 4463                          | 2200                         | 598                          | 2798                          | 0,63                            | 0,99         | 34,6              |
| Dez    | 3766                         | 1652                        | 5418                          | 2283                         | 462                          | 2746                          | 0,51                            | 1,00         | 8,5               |
| Summe  | 29602                        | 12945                       | 42547                         | 26816                        | 13253                        | 40068                         | 0,94                            | 0,79         | 10884             |

| Monate   | 0e    | Τ      | а    |  | <br>A REPORT OF THE PROPERTY. | <br> |
|----------|-------|--------|------|--|-------------------------------|------|
| Wioriato | [°C]  | [h]    | [-]  |  |                               |      |
| Jan      | -2,04 | 107,98 | 7,75 |  |                               |      |
| Feb      | -0,18 | 108,49 | 7,78 |  |                               |      |
| Mar      | 3,64  | 107,98 | 7,75 |  |                               |      |
| Apr      | 8,02  | 108,14 | 7,76 |  |                               |      |
| Mai      | 12,61 | 107,98 | 7,75 |  |                               |      |
| Jun      | 15,67 | 108,14 | 7,76 |  |                               |      |
| Jul      | 17,45 | 107,98 | 7,75 |  |                               |      |
| Aug      | 16,93 | 107,98 | 7,75 |  |                               |      |
| Sep      | 13,78 | 108,14 | 7,76 |  |                               |      |
| Okt      | 8,72  | 107,98 | 7,75 |  |                               |      |
| Nov      | 3,18  | 108,14 | 7,76 |  |                               |      |
| Dez      | -0,77 | 107,98 | 7,75 |  |                               |      |

Der spezifische Kühlbedarf KB bezogen auf die BGF beträgt: 34,40 [kWh/(m²a)]





## Kühlbedarf Referenzstandort

Projekt: FF OPPONITZ, NEUBAU FEUERWEHRHAUS Datum: 30. August 2011

Blatt 14

## Monatliche Berechnung des Kühlbedarfs:

| Standort        | Referenzklima |      |
|-----------------|---------------|------|
| Klimaregion     | NF            |      |
| Seehöhe         | 0             | m    |
| LT              | 189,0459      | W/K  |
| LV              | 82,96307      | W/K  |
| Innentemperatur | 26            | °C   |
| t c,d           | 12            | h/d  |
| g icn           | 7,5           | W/m² |
| BGF             | 316,37        | m²   |
| <u>.C</u>       | 29377,2       | Wh/K |

| Monate | Trans<br>verluste<br>[kWh/a] | Lüft<br>verluste<br>[kWh/a] | Wärme-<br>verluste<br>[kWh/a] | Innere<br>Gewinne<br>[kWh/a] | Solare<br>Gewinne<br>[kWh/a] | Gesamt-<br>gewinne<br>[kWh/a] | Gewinn/<br>verlust<br>Verhältn. | Nutz<br>grad | Bedarf<br>[kWh/a] |
|--------|------------------------------|-----------------------------|-------------------------------|------------------------------|------------------------------|-------------------------------|---------------------------------|--------------|-------------------|
| Jan    | 3872                         | 1699                        | 5571                          | 2283                         | 508                          | 2791                          | 0,50                            | 1,00         | 8,0               |
| Feb    | 3210                         | 1387                        | 4597                          | 2033                         | 796                          | 2829                          | 0,62                            | 0,99         | 30,6              |
| Mar    | 2980                         | 1308                        | 4288                          | 2283                         | 1131                         | 3414                          | 0,80                            | 0,96         | 167,9             |
| Apr    | 2230                         | 974                         | 3203                          | 2200                         | 1329                         | 3529                          | 1,10                            | 0,84         | 693,9             |
| Mai    | 1660                         | 728                         | 2388                          | 2283                         | 1630                         | 3914                          | 1,64                            | 0,60         | 1886,2            |
| Jun    | 1180                         | 515                         | 1695                          | 2200                         | 1572                         | 3772                          | 2,22                            | 0,45         | 2532,6            |
| Jul    | 968                          | 425                         | 1392                          | 2283                         | 1662                         | 3945                          | 2,83                            | 0,35         | 3114,4            |
| Aug    | 1046                         | 459                         | 1506                          | 2283                         | 1553                         | 3837                          | 2,55                            | 0,39         | 2844,6            |
| Sep    | 1493                         | 652                         | 2145                          | 2200                         | 1258                         | 3458                          | 1,61                            | 0,61         | 1624,3            |
| Okt    | 2301                         | 1010                        | 3311                          | 2283                         | 952                          | 3235                          | 0,98                            | 0,90         | 411,8             |
| Nov    | 2973                         | 1298                        | 4271                          | 2200                         | 529                          | 2728                          | 0,64                            | 0,99         | 37,8              |
| Dez    | 3630                         | 1593                        | 5223                          | 2283                         | 419                          | 2702                          | 0,52                            | 1,00         | 9,7               |
| Summe  | 27543                        | 12048                       | 39592                         | 26816                        | 13339                        | 40154                         | 1,01                            | 0,65         | 13362             |

|        | 0e    | T      | а    |
|--------|-------|--------|------|
| Monate | [°C]  | [h]    | [-]  |
|        | [°C]  |        |      |
| Jan    | -1,53 | 108,00 | 7,75 |
| Feb    | 0,73  | 108,52 | 7,78 |
| Mar    | 4,81  | 108,00 | 7,75 |
| Apr    | 9,62  | 108,16 | 7,76 |
| Mai    | 14,20 | 108,00 | 7,75 |
| Jun    | 17,33 | 108,16 | 7,76 |
| Jul    | 19,12 | 108,00 | 7,75 |
| Aug    | 18,56 | 108,00 | 7,75 |
| Sep    | 15,03 | 108,16 | 7,76 |
| Okt    | 9,64  | 108,00 | 7,75 |
| Nov    | 4,16  | 108,16 | 7,76 |
| Dez    | 0,19  | 108,00 | 7,75 |

Der spezifische Kühlbedarf KB bezogen auf die BGF beträgt: 42,23 [kWh/(m²a)]



## Solare Aufnahmeflächen

Projekt: FF OPPONITZ, NEUBAU FEUERWEHRHAUS

Blatt 15

Datum: 30. August 2011

| Die Verschattung wurde vereinfacht berechnet | chnet                   |          |         |        |      |            |      |         |         |
|----------------------------------------------|-------------------------|----------|---------|--------|------|------------|------|---------|---------|
| Wand                                         | Fenster                 | Richtung | Neigung | Fläche | ΜĎ   | Glasanteil | s L  | A_trans | Qs      |
|                                              |                         |          | _       | [m²]   | 工    | [%]        |      | [m²]    | [kWh]   |
| NO AW 01                                     | AF 02 1.10/3.00m U=1.11 | 45       | 06      | 3,30   | 0,49 | 73,64      | 0,75 | 0,88    | 423,31  |
| NO AVV OT                                    | AF 05 1,65/2,10m U=1,15 | 45       | 06      | 3,46   | 0,49 | 70,13      | 0,75 | 0,88    | 423,31  |
| SO AW 01                                     | AF 01 1 10/3 55m U=1.12 | 135      | 06      | 19,52  | 0,49 | 72,60      | 0,75 | 5,16    | 4030,41 |
| SO AW 01                                     | AF 03 1 10/2 10m U=1.12 | 135      | 06      | 6,93   | 0,49 | 70,13      | 0,75 | 1,77    | 1381,86 |
| SO AW 01                                     | AF 04 2 75/2 10m U=1 14 | 135      | 06      | 5,78   | 0,49 | 73,25      | 0,75 | 1,54    | 1202,73 |
| SW AW 01                                     | AT 01 2 50/2 80m U=1.39 | 225      | 06      | 2,00   | 0,49 | 63,79      | 0,75 | 1,62    | 1269,55 |
| NW AW 01                                     | AF 10 1,00/0,70m U=1,15 | 315      | 06      | 4,20   | 0,49 | 57,14      | 0,75 | 0,87    | 418,08  |
| FD 01 KDO                                    | LK 1,20/1,20m U=1,52    | 7        | 0       | 4,32   | 0,51 | 44,44      | 0,75 | 0,74    | 790,45  |





## Transmissionen nach ÖNORM B 8110-6:2007

| Projekt: FF OPPONITZ, NEUBAU FEUERWEHRHAUS | Datum: 30. August 2011 | Blatt 16 |
|--------------------------------------------|------------------------|----------|
|--------------------------------------------|------------------------|----------|

| .e Verluste zu Außenluft                                                                                                                                                                                                                                                                                                                                |                        |                                   |             |                                            |                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------------------------|-------------|--------------------------------------------|------------------------------------------|
| Bezeichnung                                                                                                                                                                                                                                                                                                                                             | A<br>[m²]              | U<br>[W/m²K]                      | f_ih<br>[-] | F_FH<br>[-]                                | A*U*f_ih*F_FI<br>[W/K]                   |
| NO AW 01                                                                                                                                                                                                                                                                                                                                                | 24,08                  | 0,13                              | 1,00        | 1,00                                       | 3,13                                     |
| AF 02 1,10/3,00m U=1,11                                                                                                                                                                                                                                                                                                                                 | 3,30                   | 1,11                              | 1,00        | 1,00                                       | 3,66                                     |
| AF 05 1,65/2,10m U=1,15                                                                                                                                                                                                                                                                                                                                 | 3,47                   | 1,15                              | 1,00        | 1,00                                       | 3,98                                     |
| SO AW 01                                                                                                                                                                                                                                                                                                                                                | 64,03                  | 0,13                              | 1,00        | 1,00                                       | 8,32                                     |
| AF 01 1,10/3,55m U=1,12                                                                                                                                                                                                                                                                                                                                 | 19,53                  | 1,12                              | 1,00        | 1,00                                       | 21,87                                    |
| AF 03 1,10/2,10m U=1,12                                                                                                                                                                                                                                                                                                                                 | 6,93                   | 1,12                              | 1,00        | 1,00                                       | 7,76                                     |
| AF 04 2,75/2,10m U=1,14                                                                                                                                                                                                                                                                                                                                 | 5,78                   | 1,14                              | 1,00        | 1,00                                       | 6,58                                     |
| SW AW 01                                                                                                                                                                                                                                                                                                                                                | 87,38                  | 0,13                              | 1,00        | 1,00                                       | 11,36                                    |
| AT 01 2,50/2,80m U=1,39                                                                                                                                                                                                                                                                                                                                 | 7,00                   | 1,39                              | 1,00        | 1,00                                       | 9,73                                     |
| NW AW 01                                                                                                                                                                                                                                                                                                                                                | 58,50                  | 0,13                              | 1,00        | 1,00                                       | 7,61                                     |
| AF 10 1,00/0,70m U=1,15                                                                                                                                                                                                                                                                                                                                 | 4,20                   | 1,15                              | 1,00        | 1,00                                       | 4,83                                     |
| FD 01 KDO                                                                                                                                                                                                                                                                                                                                               | 237,85                 | 0,11                              | 1,00        | 1,00                                       | 26,16                                    |
| LK 1,20/1,20m U=1,52                                                                                                                                                                                                                                                                                                                                    | 4,32                   | 1,41                              | 1,00        | 1,00                                       | 6,09                                     |
| FD 02 KDO                                                                                                                                                                                                                                                                                                                                               | 74,21                  | 0,11                              | 1,00        | 1,00                                       | 8,16                                     |
| Summe                                                                                                                                                                                                                                                                                                                                                   | 600,56                 |                                   |             |                                            | 129,26                                   |
| Summe                                                                                                                                                                                                                                                                                                                                                   | 349,91                 |                                   |             |                                            | 40.45                                    |
| Juilline                                                                                                                                                                                                                                                                                                                                                | 349,91                 |                                   |             |                                            | 10,10                                    |
|                                                                                                                                                                                                                                                                                                                                                         | 349,91                 |                                   |             | 950,47                                     | [m²]                                     |
| Hüllfläche (AB)<br>Leitwert für Bauteile, die an Außenluft grenzen (Le)                                                                                                                                                                                                                                                                                 |                        |                                   |             | 950,47<br>129,26                           |                                          |
| Hüllfläche (AB)<br>Leitwert für Bauteile, die an Außenluft grenzen (Le)<br>Leitwert für Bauteile, die an unbeheizte Räume grenzen (Lu)                                                                                                                                                                                                                  |                        |                                   |             | · · · · · · · · · · · · · · · · · · ·      | [m²]                                     |
| Hüllfläche (AB)<br>Leitwert für Bauteile, die an Außenluft grenzen (Le)<br>Leitwert für Bauteile, die an unbeheizte Räume grenzen (Lu)<br>Leitwert für bodenberührte Bauteile und Bauteile, die an unk                                                                                                                                                  |                        | renzen (Lg)                       |             | 129,26                                     | [m²]<br>[W/K]                            |
| Hüllfläche (AB)<br>Leitwert für Bauteile, die an Außenluft grenzen (Le)<br>Leitwert für Bauteile, die an unbeheizte Räume grenzen (Lu)<br>Leitwert für bodenberührte Bauteile und Bauteile, die an unk<br>Leitwertzuschlag für Wärmebrücken (vereinfacht)                                                                                               |                        | renzen (Lg)                       |             | 129,26<br>0,00<br>40,45<br>19,40           | [m²]<br>[W/K]<br>[W/K]<br>[W/K]<br>[W/K] |
| Hüllfläche (AB)<br>Leitwert für Bauteile, die an Außenluft grenzen (Le)<br>Leitwert für Bauteile, die an unbeheizte Räume grenzen (Lu)<br>Leitwert für bodenberührte Bauteile und Bauteile, die an unk<br>Leitwertzuschlag für Wärmebrücken (vereinfacht)                                                                                               |                        | renzen (Lg)                       |             | 129,26<br>0,00<br>40,45                    | [m²]<br>[W/K]<br>[W/K]<br>[W/K]          |
| Hüllfläche (AB)<br>Leitwert für Bauteile, die an Außenluft grenzen (Le)<br>Leitwert für Bauteile, die an unbeheizte Räume grenzen (Lu)<br>Leitwert für bodenberührte Bauteile und Bauteile, die an unk<br>Leitwertzuschlag für Wärmebrücken (vereinfacht)<br>Leitwert der Gebäudehülle (LT)                                                             |                        | renzen (Lg)                       |             | 129,26<br>0,00<br>40,45<br>19,40           | [m²]<br>[W/K]<br>[W/K]<br>[W/K]<br>[W/K] |
| Hüllfläche (AB)  Leitwert für Bauteile, die an Außenluft grenzen (Le) Leitwert für Bauteile, die an unbeheizte Räume grenzen (Lu) Leitwert für bodenberührte Bauteile und Bauteile, die an unk Leitwertzuschlag für Wärmebrücken (vereinfacht) Leitwert der Gebäudehülle (LT)                                                                           | onditionierte Keller g | renzen (Lg)                       |             | 129,26<br>0,00<br>40,45<br>19,40           | [m²]<br>[W/K]<br>[W/K]<br>[W/K]<br>[W/K] |
| Hüllfläche (AB)  Leitwert für Bauteile, die an Außenluft grenzen (Le) Leitwert für Bauteile, die an unbeheizte Räume grenzen (Lu) Leitwert für bodenberührte Bauteile und Bauteile, die an unk Leitwertzuschlag für Wärmebrücken (vereinfacht) Leitwert der Gebäudehülle (LT)  Informativ: Leitwertzuschlag für Wärmebrücken (detailiert It. Baukörper) | onditionierte Keller g | renzen (Lg)                       |             | 129,26<br>0,00<br>40,45<br>19,40<br>189,11 | [m²]<br>[W/K]<br>[W/K]<br>[W/K]<br>[W/K] |
| Hüllfläche (AB)  Leitwert für Bauteile, die an Außenluft grenzen (Le) Leitwert für Bauteile, die an unbeheizte Räume grenzen (Lu) Leitwert für bodenberührte Bauteile und Bauteile, die an unk Leitwertzuschlag für Wärmebrücken (vereinfacht) Leitwert der Gebäudehülle (LT)  Informativ: Leitwertzuschlag für Wärmebrücken (detailiert It. Baukörper) | onditionierte Keller g | renzen (Lg)                       |             | 129,26<br>0,00<br>40,45<br>19,40<br>189,11 | [m²]<br>[W/K]<br>[W/K]<br>[W/K]<br>[W/K] |
| Hüllfläche (AB)<br>Leitwert für Bauteile, die an Außenluft grenzen (Le)<br>Leitwert für Bauteile, die an unbeheizte Räume grenzen (Lu)<br>Leitwert für bodenberührte Bauteile und Bauteile, die an unk<br>Leitwertzuschlag für Wärmebrücken (vereinfacht)                                                                                               | onditionierte Keller g | renzen (Lg) $ [W] = (L_T + L_V) $ | ,*At        | 129,26<br>0,00<br>40,45<br>19,40<br>189,11 | [m²]<br>[W/K]<br>[W/K]<br>[W/K]<br>[W/K] |



## Lüftungsverluste

Projekt: FF OPPONITZ, NEUBAU FEUERWEHRHAUS Beiblatt: 2 c

Blatt 17

Datum: 30. August 2011

## Lüftungsverluste Nichtwohngebäude - Heizfall - mechanische Lüftung

|                                                                   | Jän    | Feb    | Mar    | Apr    | Mai    | Jun    | Jul    | Aug    | Sep    | Okt    | Nov    | Dez    |
|-------------------------------------------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Rijokwarmezahi der Warmeriickgewinning & Son [-]                  | 0.65   | 0.65   | 0,65   | 0,65   | 0,65   | 0,65   | 0,65   | 0,65   | 0,65   | 0,65   | 0,65   | 0,65   |
| Washmaharaitatallingsgrad des Erdwarmetauschers im Heizfall       | 00.0   | 0.00   | 00.00  | 00'0   | 00'0   | 00'0   | 00'0   | 00'0   | 00,0   | 00'0   | 00'0   | 00,00  |
| Warmebereitstellungsgrad des Gesamtsvstems im Heizfall III.       | 0.650  | 0,650  | 0,650  | 0,650  | 0,650  | 0,650  | 0,650  | 0,650  | 0,650  | 0,650  | 0,650  | 0,650  |
| Mittare Liftwechselrate n. [1/h]                                  | 0.445  | 0.429  | 0,445  | 0,440  | 0,445  | 0,440  | 0,445  | 0,445  | 0,440  | 0,445  | 0,440  | 0,445  |
| Britto Grindflache RGF[m²]                                        | 316.37 | 316.37 | 316.37 | 316,37 | 316,37 | 316,37 | 316,37 | 316,37 | 316,37 | 316,37 | 316,37 | 316,37 |
| Energatisch wirksamas Liftvoluman V [m³]                          | 658.05 | 658,05 | 658,05 | 658,05 | 658,05 | 658,05 | 658,05 | 658,05 | 658,05 | 658,05 | 658,05 | 658,05 |
| Marmakanazität dar Luft o C. : [Mh//m³.K)]                        | 0.34   | 0.34   | 0.34   | 0,34   | 0,34   | 0,34   | 0,34   | 0,34   | 0,34   | 0,34   | 0,34   | 0,34   |
| i infunos-la itwart im Haizfall infolge einer RI T-Anlage L IW/KI | 34.86  | 33,56  | 34.86  | 34,46  | 34,86  | 34,46  | 34,86  | 34,86  | 34,46  | 34,86  | 34,46  | 34,86  |
| Liftingsyerlist im Heizfall infolge einer RLT-Anlage O [kWh]      | 572    | 455    | 424    | 297    | 192    | 107    | 99     | 80     | 154    | 292    | 417    | 539    |
| 1 uftweekselrate durch Infiltration n [1/h]                       | 0.04   | 0.04   | 0.04   | 0.04   | 0,04   | 0,04   | 0,04   | 0,04   | 0,04   | 0,04   | 0,04   | 0,04   |
| Liftings-I eitwert infolde Infiltration / [W/K]                   | 8.95   | 8,95   | 8,95   | 8,95   | 8,95   | 8,95   | 8,95   | 8,95   | 8,95   | 8,95   | 8,95   | 8,95   |
| liffungsverlust im Heizfall infolge Infiltration O., p. + [kWh]   | 147    | 121    | 109    | 77     | 49     | 28     | 17     | 20     | 40     | 75     | 108    | 138    |
| Gesamter Lüftungsverlust [kWh]                                    | 718    | 929    | 533    | 374    | 241    | 135    | 83     | 100    | 194    | 368    | 226    | 229    |

Der Wärmebereitstellungsgrad des Gesamtsystems im Heizfall im jeweiligen Monat wird gemäß ÖNORM B 8110-6:2007 wie folgt ermittelt: 1/ges, = 1 - (1 - 0/WRG) · (1 - 1/EWT, h)

Der Lüftungs-Leitwert im Heizfall für Nichtwohngebäude infolge einer RLT-Anlage wird gemäß ÖNORM B 8110-6:2007 wie folgt ermittelt:  $L_{Vh,RLT} = c_{p,L} \cdot p_L \cdot V_V \cdot n_{L,m,h} \cdot (1 - n_Vges_h)$ 

Der Lüftungs-Leitwert für Nichtwohngebäude infolge Infiltration wird gemäß ÖNORM B 8110-6,2007 wie folgt ermittelt:  $L_{V,inf} = c_{\rho,L} \cdot \rho_L \cdot V_v \cdot n_x$ 



## Lüftungsverluste

Projekt: FF OPPONITZ, NEUBAU FEUERWEHRHAUS Beiblatt: 2 c

Blatt 18

Datum: 30. August 2011

# Lüftungsverluste Nichtwohngebäude - Kühlfall - mechanische Lüftung

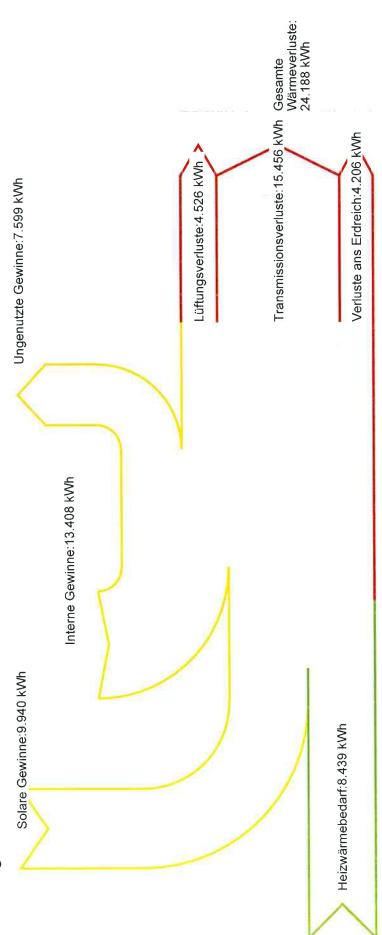
| 316.37 316.37 316.37 316.37 316.37 316.37 |
|-------------------------------------------|
| 7000                                      |
|                                           |
|                                           |
|                                           |
|                                           |
|                                           |
|                                           |
|                                           |
|                                           |

Der Wärmebereitstellungsgrad des Gesamtsystems im Kühlfall im jeweiligen Monat wird gemäß ÖNORM B 8110-6:2007 wie folgt ermittelt; "<sub>Vges.c</sub> = 1 - (1 - Ф<sub>WRG</sub>) - (1 - "<sub>EWT,c</sub>)

Der Lüftungs-Leitwert im Kühlfall für Nichtwohngebäude infolge einer RLT-Anlage wird gemäß ÖNORM B 8110-6:2007 wie folgt ermittelt;  $L_{VG,RL,T} = c_{\rho,L} \cdot P_L \cdot V_V \cdot n_{L,m,c} \cdot (1 - n_{Vges,c})$ 

Der Lüftungs-Leitwert für Nichtwohngebäude infolge Infiltration wird gemäß ÖNORM B 8110-6:2007 wie folgt ermittelt:  $L_{V,inf} = c_{p,L} \cdot \rho_L \cdot V_{v} \cdot n_x$ 






## Energiebilanz:

Projekt: FF OPPONITZ, NEUBAU FEUERWEHRHAUS Blatt:: Energiebilanz

Blatt 19

Datum: 30. August 2011



GEBÄUDEGRENZE





## Bauteil - Dokumentation Wärmeübertragung durch Bauteile (U-Wert) nach EN ISO 6946

Projekt: **FF OPPONITZ, NEUBAU FEUERWEHRHAUS** Datum: 30. August 2011 Blatt 20

Bauteil: AW01 Ziegel VWS 20 cm

|              | Konstruktion                                 | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | OI3            | Nr                                  | Bezeichnung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Dicke               | Lambda | R-Wert   |
|--------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------|----------|
| Außen        | (Skizze)                                     | Innen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [m]                 | [W/mK] | [m2*K/W] |
|              |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | -                                   | Wärmeübergangswiderstand Aussen Rs,e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     | -      | 0,040    |
|              |                                              | - 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9              | 1                                   | Capatect SH-Reibputz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0,003               | 0,750  | 0,004    |
| 1            |                                              | <b>3</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 25<br>25<br>25 | 2                                   | Capatect Klebe-u.Spachtelmasse 190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0,005               | 1,000  | 0,005    |
| 1            | <b>医                                    </b> | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 93             | 3                                   | Capatect Lambdapor Dämmplatte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0,200               | 0,032  | 6,250    |
|              | <b>新</b> 樹                                   | <b>3</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 98             | 4                                   | Capatect Klebe-u.Spachtelmasse 190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0,003               | 1,000  | 0,003    |
| $\sim$       | 100                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 2            | 5                                   | POROTHERM 25-38 N+F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0,250               | 0,259  | 0,965    |
|              | 100                                          | 84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 86             | 6                                   | Baumit MPI 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0,010               | 0,800  | 0,013    |
| $\times$ DCC |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _              | Wärmeübergangswiderstand Innen Rs,i | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     | 0,130  |          |
|              | $\infty$                                     | and the second s |                |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |        |          |
|              | 100                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |        |          |
|              |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |        |          |
|              |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |        |          |
| 0,471        | m                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 00/04/1                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |        |          |
|              |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0,471               |        | 7,410    |
|              |                                              | 11.10/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ert [W/m       | 21/1                                | PROPERTY AND ASSESSMENT OF THE PROPERTY OF THE | a a caracter beauti |        | 0,13     |

🛣 wird in der U-Wert Berechnung / OI3 Berechnung berücksichtigt

Die Anforderung an den Höchstwert des Wärmedurchgangskoeffizienten (U-Wert) laut OIB - Richtlinie 6 - Energieeinsparung und Wärmeschutz - Ausgabe: April 2007 ist erfüllt.

| Geforderter U-We | ert   | Berechneter U-We | ert   |
|------------------|-------|------------------|-------|
| 0.35             | W/m²K | 0.13             | W/m²K |

Bauteil: AW05 Sockel 20 cm

|             | Konstruktion   |       | U       | OI3     |        | Nr        | Bezeichnung                         |   | Dic |    | Lambda | R-Wert      |
|-------------|----------------|-------|---------|---------|--------|-----------|-------------------------------------|---|-----|----|--------|-------------|
| Außen       | (Skizze)       | Innen |         |         |        |           |                                     |   |     | m] | [W/mK] | $[m^2*K/W]$ |
|             |                |       |         | Terral. |        |           | Wärmeübergangswiderstand Aussen Rs, | е |     |    |        | 0,000       |
|             |                |       | 8       | 3.3     | 100    | 1         | Capatect Sockeldämmplatte           |   | 0,2 |    | 0,035  | 5,714       |
| 11 11 11 11 | Web.           |       | 30      | *       |        | 2         | Capatect Klebe-u Spachtelmasse 190  |   | 0,0 | 03 | 1,000  | 0,003       |
|             | 1 P. C.        |       | 83      | 8       |        | 3         | Stahlbeton                          |   | 0,2 | 50 | 2,500  | 0,100       |
| 1           |                |       |         |         |        | -         | Wärmeübergangswiderstand Innen Rs,i |   |     | 7  |        | 0,130       |
|             | Ze dinigra     |       |         |         |        |           |                                     |   |     |    |        |             |
|             | N 140 (5) 70   |       |         |         |        |           |                                     |   |     |    |        |             |
| _           | g to the first |       |         |         |        |           |                                     |   |     |    |        |             |
| 1           |                |       |         |         |        |           |                                     |   |     |    |        |             |
| ~           |                |       |         |         |        |           |                                     |   |     |    |        |             |
| ( >-(       |                |       |         |         |        |           |                                     |   |     |    |        |             |
| -           | 13.12          |       |         |         |        |           |                                     |   |     |    |        |             |
| 1           | 1              |       |         |         |        |           |                                     |   |     |    |        |             |
|             | 7 1            |       |         |         |        |           |                                     |   |     |    |        |             |
| 0,453       | 3 m            |       |         |         |        |           |                                     |   |     |    |        |             |
|             |                |       |         |         |        |           |                                     |   | 0,4 | 53 |        | 5,947       |
|             |                |       | 11 JA/- |         | .a. 21 | <b>/1</b> |                                     |   | 0,4 |    |        | 0.17        |

🗭 wird in der U-Wert Berechnung / OI3 Berechnung berücksichtigt

Die Anforderung an den Höchstwert des Wärmedurchgangskoeffizienten (U-Wert) laut OIB - Richtlinie 6 - Energieeinsparung und Wärmeschutz - Ausgabe: April 2007 ist erfüllt.

| Geforderter U-Wert |       | Berechneter U-Wert |       |
|--------------------|-------|--------------------|-------|
| 0,40               | W/m²K | 0,17               | W/m²K |



## Bauteil - Dokumentation Wärmeübertragung durch Bauteile (U-Wert) nach EN ISO 6946

Projekt: FF OPPONITZ, NEUBAU FEUERWEHRHAUS Datum: 30. August 2011 Blatt 21


|                        | Konstruktion           |       | U       | OI3          | Nr    | Bezeichnung                          | Dicke | Lambda | R-Wert   |
|------------------------|------------------------|-------|---------|--------------|-------|--------------------------------------|-------|--------|----------|
| Außen                  | (Skizze)               | Innen |         |              |       |                                      | [m]   | [W/mK] | [m²*K/W] |
|                        |                        | -     |         | - Comp       |       | Wärmeübergangswiderstand Aussen Rs,e | 2010  | 0.000  | 0,130    |
|                        |                        | _     | 82      | 8            | 1     | Baumit MPI 20                        | 0,010 | 0,600  | 0,017    |
|                        | The second             |       | ×       | 83           | 2     | POROTHERM 25-38 N+F                  | 0,250 | 0,259  | 0,965    |
| THE RESIDENT           | No.                    |       | 888     | 8            | 3_    | TRENNFUGENPLATTEN TRFP 30            | 0,030 | 0,033  | 0,909    |
| 125                    | /                      |       | 86      | 88           | 4     | POROTHERM 25-38 N+F                  | 0,250 | 0,259  | 0,965    |
|                        |                        |       | *       | <b>Y</b> C   | 5     | Baumit MPI 25                        | 0,010 | 0,800  | 0,013    |
|                        |                        |       |         |              | -     | Wärmeübergangswiderstand Innen Rs,i  |       |        | 0,130    |
|                        | <b>K</b>               |       |         |              |       |                                      |       |        |          |
|                        |                        |       |         |              |       |                                      |       |        |          |
| Dene                   |                        |       |         |              |       |                                      |       |        |          |
|                        | 1                      |       |         |              |       |                                      |       |        |          |
| DC 3G                  |                        |       |         |              |       |                                      |       |        |          |
|                        |                        |       |         |              |       |                                      |       |        |          |
| 10000                  | 7                      |       |         |              |       |                                      |       |        |          |
| Visit Toller Ball Ball | V Bullion and a series |       |         |              |       |                                      |       |        |          |
| 0,5                    | 50 m                   |       |         |              |       |                                      |       |        |          |
|                        |                        |       |         |              |       |                                      | 0.550 |        | 3,129    |
|                        |                        |       | 11.10/- | ert IW/m     | 21/1  |                                      | 0,000 |        | 0,32     |
|                        |                        |       | 0-446   | SILL A AVIII | 1.171 |                                      |       |        | 0,0      |

🛣 wird in der U-Wert Berechnung / Ol3 Berechnung berücksichtigt

Die Anforderung an den Höchstwert des Wärmedurchgangskoeffizienten (U-Wert) laut OIB - Richtlinie 6 - Energieeinsparung und Wärmeschutz - Ausgabe: April 2007 ist erfüllt.

| Geforderter U-Wert |       | Berechneter U-Wert |       |
|--------------------|-------|--------------------|-------|
| 0.60               | W/m²K | 0,32               | W/m²K |

Bauteil : FB 01 Fussboden KDO Verwendung : erdanliegender Fußboden



Konstruktion

| Ü   | OI3      | Nr   | Bezeichnung                                       | Dicke<br>[m] | Lambda<br>[W/mK] | R-Wert<br>[m²*K/W] |
|-----|----------|------|---------------------------------------------------|--------------|------------------|--------------------|
|     |          | _    | Wärmeübergangswiderstand Aussen Rs,i              | -            | -                | 0,170              |
| 8   | *        | 1    | Keramische Beläge                                 | 0,015        | 1,200            | 0,013              |
| 8   | 8        | 2    | Zementestrich                                     | 0,070        | 1,330            | 0,053              |
| ¥4  | 8        | 3    | Polyethylenbahn                                   | 0,000        | 0,500            | ( '                |
| 50  | 8        | 4    | steinothan 107 / FD PUR-Dämmplatte ab 01.04.10    | 0,160        | 0,023            | 6,                 |
| ¥   | 33       | 5    | Polystyroi EPS-Granulat zementgebunden <125 kg/m³ | 0,055        | 0,060            | 0,917              |
| 8   | 7        | 6    | Polymerbitumen-Dichtungsbahn                      | 0,010        | 0,230            | 0,043              |
| 8   | 9        | 7    | Stahlbeton                                        | 0,250        | 2,500            | 0,100              |
|     |          | -    | Wärmeübergangswiderstand Innen Rs,e               | -            | -                | 0,000              |
|     |          |      |                                                   |              |                  |                    |
|     |          |      |                                                   |              |                  |                    |
|     |          |      |                                                   |              |                  |                    |
|     |          |      |                                                   |              |                  |                    |
|     |          |      |                                                   | 0,560        |                  | 8,252              |
| J-W | ert (W/m | 12K1 |                                                   |              |                  | 0,12               |

W/m²K

🛣 wird in der U-Wert Berechnung / OI3 Berechnung berücksichtigt

Die Anforderung an den Höchstwert des Wärmedurchgangskoeffizienten (U-Wert) laut OIB - Richtlinie 6 - Energieeinsparung und Wärmeschutz - Ausgabe: April 2007 ist erfüllt.

| Geforderter U-We | rt    | Berechneter U-Wert |   |  |
|------------------|-------|--------------------|---|--|
| 0,40             | W/m²K | 0,12               | \ |  |





0,11

## Bauteil - Dokumentation Wärmeübertragung durch Bauteile (U-Wert) nach EN ISO 6946

Projekt: **FF OPPONITZ, NEUBAU FEUERWEHRHAUS** Datum: 30. August 2011 Blatt 22

Bauteil: FD 01 Flachdach KDO 25 cm Verwendung: Dach ohne Hinterlüftung 013 Dicke Konstruktion Nr Bezeichnung Lambda R-Wert [m] [W/mK] [m2\*K/W] Wärmeübergangswiderstand Aussen Rs,e Sand, Kies feucht 20% 2) 0.040 0,050 0,071 0.700 EPDM Baufolie, Gummi 0,170 0,012 0,002 Polystyrol EPS 25 0,320 0,036 8,889 Villaself SKB-Plus 0,003 0,200 0,014 Stahlbeton 0,250 2,500 0,100 Wärmeübergangswiderstand Innen Rs,i 0,100 0,625 9,226

wird in der U-Wert Berechnung / Ol3 Berechnung berücksichtigt 2) Für diese Baustoffe wurden die ECOTECH-Baustoffdaten vom Benutzer individuell abgeändert!
Die Anforderung an den Höchstwert des Wärmedurchgangskoeffizienten (U-Wert) laut OIB - Richtlinie 6 - Energieeinsparung und Wärmeschutz - Ausgabe: April 2007 ist erfüllt.

U-Wert [W/m²K]

| Geforderter U-Wert |       | Berechneter U-Wert |       |  |
|--------------------|-------|--------------------|-------|--|
| 0.20               | W/m²K | 0.11               | W/m²K |  |

Bauteil: FD 02 Flachdach KDO 20 cm

| rerwendung : Dach onne Hinteriuπung |          |        |                  |    |                                      |              |                  |                    |
|-------------------------------------|----------|--------|------------------|----|--------------------------------------|--------------|------------------|--------------------|
| Konstruktion                        | U        | С      | 013              | Nr | Bezeichnung                          | Dicke<br>[m] | Lambda<br>[W/mK] | R-Wert<br>[m²*K/W] |
|                                     |          |        |                  | -  | Wärmeübergangswiderstand Aussen Rs,e | -            |                  | 0,040              |
|                                     | <b>S</b> | 5      | ₹.               | 1  | Sand, Kies feucht 20% 2)             | 0,050        | 0,700            | 0,071              |
|                                     | ~        | 9      | 4                | 2  | EPDM Baufolie, Gummi                 | 0,002        | 0,170            | 0,012              |
|                                     | 825      | - 5    | Y                | 3  | Polystyrol EPS 25                    | 0,320        | 0,036            | 8,889              |
| SEESESS                             | 8 8 8 8  | Ş      | <b>3</b>         | 4  | Villaself SKB-Plus                   | 0,003        | 0,200            | 0,014              |
| Andrew Telephone Telephone          | 50       | 5      | 98               | 5  | Stahlbeton                           | 0,200        | 2,500            | 0,080              |
|                                     |          |        |                  | -  | Wärmeübergangswiderstand Innen Rs,i  |              | -                | 0,100              |
|                                     |          |        |                  |    |                                      |              |                  |                    |
|                                     |          |        |                  |    |                                      |              |                  |                    |
|                                     |          |        |                  |    |                                      |              |                  |                    |
|                                     |          |        |                  |    |                                      |              |                  |                    |
|                                     |          |        |                  |    |                                      |              |                  |                    |
| <i>F</i>                            |          |        |                  |    |                                      |              |                  |                    |
|                                     |          |        |                  |    |                                      |              |                  |                    |
|                                     |          |        |                  |    |                                      |              |                  |                    |
|                                     |          |        |                  |    |                                      | 0,575        |                  | 9,206              |
|                                     | U-V      | Vert [ | W/m <sup>2</sup> | KI |                                      |              |                  | 0,11               |

wird in der U-Wert Berechnung / OI3 Berechnung berücksichtigt

2) Für diese Baustoffe wurden die ECOTECH-Baustoffdaten vom Benutzer individuell abgeändert!

Die Anforderung an den Höchstwert des Wärmedurchgangskoeffizienten (U-Wert) laut OIB - Richtlinie 6 - Energieeinsparung und Wärmeschutz - Ausgabe: April 2007 ist erfüllt.

| Geforderter U-Wert |       | Berechneter U-Wert |       |
|--------------------|-------|--------------------|-------|
| 0.20               | W/m²K | 0.11               | W/m²K |



Projekt: FF OPPONITZ, NEUBAU FEUERWEHRHAUS

Datum: 30. August 2011

Blatt 23

Außenfenster:

AF 01 1,10/3,55m U=1,12

Breite:

1,10 m

Höhe:

3,55 m

Glasumfang:

11,70 m

Dichtheit nach ÖNORM B 5300 klassifiziert :

Sanierung NÖ:

Fenster unverändert

## Rechteckige Grundform

| Bezeichnung         | Anzahl | U-Wert | Breite   | Baustoff                             |
|---------------------|--------|--------|----------|--------------------------------------|
| Innere Füllfläche   | 1      | 1.00   | [m]<br>- | Verglasung Light 4b/16Ar/b4 Ug 1,0   |
| Rahmen              | 1      | 1,00   | 0,10     | dimension+ Uf 1,0 W/m²K 3fach Aufbau |
| Vertikal-Sprossen   | 0      | ,      | 0,10     | dimension+ Uf 1,0 W/m²K 3fach Aufbau |
| Horizontal-Sprossen | 2      | 1,00   | 0,10     | dimension+ Uf 1,0 W/m²K 3fach Aufbau |

## Zwischen Rahmen und Glas wurden Wärmebrücken berücksichtigt:

Doppel- und Mehrfachgläser, unbeschichtet / Holz- und Kunststoffrahmen

0,04 W/(m·K)

Glasumfang:

11,70 m

## Zusammenfassung

Glasfläche:

2.84 m<sup>2</sup>

Rahmenfläche:

1,07 m<sup>2</sup>

Gesamtfläche:

3,91 m<sup>2</sup>

Glasanteil:

73%

U-Wert:

1,12 W/m2K

g-Wert:

0,55

U-Wert bei 1,23m x 1,48m :

1,10 W/m2K

Die Anforderung an den Höchstwert des Wärmedurchgangskoeffizienten (U-Wert) laut OIB - Richtlinie 6 - Energieeinsparung und Wärmeschutz - Ausgabe: April 2007 ist erfüllt.

Geforderter U-Wert

Berechneter U-Wert bei 1,23m x 1,48m

Berechneter U-Wert

W/m²K

W/m²K 70





Projekt: FF OPPONITZ, NEUBAU FEUERWEHRHAUS Datum: 30. August 2011 Blatt 24

Außenfenster:

AF 02 1,10/3,00m U=1,11

Breite: Höhe:

1.10 m 3,00 m

Glasumfang:

9.00 m

Dichtheit nach ÖNORM B 5300 klassifiziert :

Sanierung NÖ:

Fenster unverändert

## Rechteckige Grundform

| Bezeichnung         | Anzahi | U-Wert<br>[W/m²K] | Breite<br>[m] | Baustoff                             |
|---------------------|--------|-------------------|---------------|--------------------------------------|
| Innere Füllfläche   | 1      | 1,00              | _             | Verglasung Light 4b/16Ar/b4 Ug 1,0   |
| Rahmen              | 1      | 1,00              | 0,10          | dimension+ Uf 1,0 W/m²K 3fach Aufbau |
| Vertikal-Sprossen   | 0      |                   | 0,00          | dimension+ Uf 1,0 W/m²K 3fach Aufbau |
| Horizontal-Sprossen | 1      | 1,00              | 0,10          | dimension+ Uf 1,0 W/m²K 3fach Aufbau |

## Zwischen Rahmen und Glas wurden Wärmebrücken berücksichtigt:

Doppel- und Mehrfachgläser, unbeschichtet / Holz- und Kunststoffrahmen

0,04 W/(m·K)

Glasumfang:

9,00 m

## Zusammenfassung

Glasfläche:

2.43 m<sup>2</sup>

Rahmenfläche:

0,87 m<sup>2</sup>

Gesamtfläche:

3,30 m<sup>2</sup>

Glasanteil:

74%

U-Wert:

1,11 W/m2K

g-Wert:

0,55

U-Wert bei 1,23m x 1,48m :

1,10 W/m2K

Die Anforderung an den Höchstwert des Wärmedurchgangskoeffizienten (U-Wert) laut OIB - Richtlinie 6 - Energieeinsparung und

Wärmeschutz - Ausgabe: April 2007 ist erfüllt.

Geforderter U-Wert

**Berechneter U-Wert** bei 1,23m x 1,48m

**Berechneter U-Wert** 

W/m²K 70

W/m²K



Projekt: FF OPPONITZ, NEUBAU FEUERWEHRHAUS

Datum: 30. August 2011

Blatt 25

Außenfenster:

AF 03 1,10/2,10m U=1,12

Breite: Höhe:

1,10 m 2,10 m

Glasumfang:

7,20 m

Dichtheit nach ÖNORM B 5300 klassifiziert :

Sanierung NÖ:

Fenster unverändert

## Rechteckige Grundform

| Bezeichnung         | Anzahl | U-Wert<br>[W/m²K]                     | Breite<br>[m] | Baustoff                             |
|---------------------|--------|---------------------------------------|---------------|--------------------------------------|
| Innere Füllfläche   | 1      | 1,00                                  | -             | Verglasung Light 4b/16Ar/b4 Ug 1,0   |
| Rahmen              | 1      | 1,00                                  | 0,10          | dimension+ Uf 1,0 W/m²K 3fach Aufbau |
| Vertikal-Sprossen   | 0      | · · · · · · · · · · · · · · · · · · · | 0,00          | dimension+ Uf 1,0 W/m²K 3fach Aufbau |
| Horizontal-Sprossen | 1      | 1,00                                  | 0,10          | dimension+ Uf 1,0 W/m²K 3fach Aufbau |

## Zwischen Rahmen und Glas wurden Wärmebrücken berücksichtigt:

Doppel- und Mehrfachgläser, unbeschichtet / Holz- und Kunststoffrahmen

0,04 W/(m·K)

Glasumfang:

7,20 m

## Zusammenfassung

Glasfläche:

1.62 m<sup>2</sup>

Rahmenfläche:

0,69 m<sup>2</sup>

Gesamtfläche:

2,31 m<sup>2</sup>

Glasanteil:

70%

U-Wert:

1,12 W/m2K

g-Wert:

0,55

U-Wert bei 1,23m x 1,48m :

1,10 W/m2K

Die Anforderung an den Höchstwert des Wärmedurchgangskoeffizienten (U-Wert) laut OIB - Richtlinie 6 - Energieeinsparung und Wärmeschutz - Ausgabe: April 2007 ist erfüllt.

Geforderter U-Wert

Berechneter U-Wert bei 1,23m x 1,48m

Berechneter U-Wert

W/m²K

W/m²K 70





Projekt: FF OPPONITZ, NEUBAU FEUERWEHRHAUS Datum: 30. August 2011 Blatt 26

Außenfenster:

AF 04 2,75/2,10m U=1,14

Breite: 2,75 m Höhe: 2,10 m

Glasumfang: 20,20 m

Dichtheit nach ÖNORM B 5300 klassifiziert

Sanierung NÖ:

Fenster unverändert

## Rechteckige Grundform

| Bezeichnung         | Anzahl | U-Wert<br>[W/m²K] | Breite<br>[m] | Baustoff                             |
|---------------------|--------|-------------------|---------------|--------------------------------------|
| Innere Füllfläche   | 1      | 1,00              | 9 10          | Verglasung Light 4b/16Ar/b4 Ug 1,0   |
| Rahmen              | 1      | 1,00              | 0,10          | dimension+ Uf 1,0 W/m²K 3fach Aufbau |
| Vertikal-Sprossen   | 2      | 1,00              | 0,10          | dimension+ Uf 1,0 W/m²K 3fach Aufbau |
| Horizontal-Sprossen | 1      | 1,00              | 0,10          | dimension+ Uf 1,0 W/m²K 3fach Aufbau |

## Zwischen Rahmen und Glas wurden Wärmebrücken berücksichtigt:

Doppel- und Mehrfachgläser, unbeschichtet / Holz- und Kunststoffrahmen

0,04 W/(m·K)

Glasumfang:

20.20 m

## Zusammenfassung

Glasfläche:

4,23 m<sup>2</sup>

Rahmenfläche:

1,55 m<sup>2</sup>

Gesamtfläche:

5,78 m<sup>2</sup>

Glasanteil:

73%

U-Wert:

1,14 W/m2K

g-Wert:

0,55

U-Wert bei 1,23m x 1,48m :

1,10 W/m2K

Die Anforderung an den Höchstwert des Wärmedurchgangskoeffizienten (U-Wert) laut OIB - Richtlinie 6 - Energieeinsparung und Wärmeschutz - Ausgabe: April 2007 ist erfüllt.

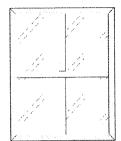
Geforderter U-Wert

**Berechneter U-Wert** bei 1,23m x 1,48m

**Berechneter U-Wert** 

70 W/m²K W/m²K




Projekt: FF OPPONITZ, NEUBAU FEUERWEHRHAUS

Datum: 30. August 2011

Blatt 27

Außenfenster:

AF 05 1,65/2,10m U=1,15



Breite: Höhe:

1,65 m 2,10 m

Glasumfang:

12,60 m

Dichtheit nach ÖNORM B 5300 klassifiziert :

Sanierung NÖ:

Fenster unverändert

## Rechteckige Grundform

| Bezeichnung         | Anzahi | U-Wert<br>[W/m²K] | Breite<br>[m] | Baustoff                             |
|---------------------|--------|-------------------|---------------|--------------------------------------|
| Innere Füllfläche   | 1      | 1,00              | -             | Verglasung Light 4b/16Ar/b4 Ug 1,0   |
| Rahmen              | 1      | 1,00              | 0,10          | dimension+ Uf 1,0 W/m²K 3fach Aufbau |
| Vertikal-Sprossen   | 1      | 1,00              | 0,10          | dimension+ Uf 1,0 W/m²K 3fach Aufbau |
| Horizontal-Sprossen | 1      | 1,00              | 0,10          | dimension+ Uf 1,0 W/m²K 3fach Aufbau |

## Detail-Daten

| Bezeichnung                      | Anzahl | Fläche              | Dicke  | Baustoff                             | g-Wert     |
|----------------------------------|--------|---------------------|--------|--------------------------------------|------------|
| horizontales Rahmen-<br>Rechteck | 1      | 0,16 m²             | 0,08 m | dimension+ Uf 1,0 W/m²K 3fach Aufbau | · <u>-</u> |
| vertikales Rahmen-Rechteck       | 1      | 0,20 m <sup>2</sup> | 0,08 m | dimension+ Uf 1,0 W/m²K 3fach Aufbau |            |
| horizontales Rahmen-<br>Rechteck | 1      | 0,16 m²             | 0,08 m | dimension+ Uf 1,0 W/m²K 3fach Aufbau | <u>-</u>   |
| vertikales Rahmen-Rechteck       | 1      | 0,20 m <sup>2</sup> | 0,08 m | dimension+ Uf 1,0 W/m²K 3fach Aufbau |            |
| Glas-Rechteck                    | 1      | 0,61 m <sup>2</sup> | 0,02 m | Verglasung Light 4b/16Ar/b4 Ug 1,0   | 0,55       |
| Glas-Rechteck                    | 1      | 0,61 m <sup>2</sup> | 0,02 m | Verglasung Light 4b/16Ar/b4 Ug 1,0   | 0,55       |
| Glas-Rechteck                    | 1      | 0.61 m <sup>2</sup> | 0.02 m | Verglasung Light 4b/16Ar/b4 Ug 1,0   | 0,5.*      |
| Glas-Rechteck                    | 1      | 0,61 m <sup>2</sup> | 0,02 m | Verglasung Light 4b/16Ar/b4 Ug 1,0   | 0,55       |
| Sprossen-Rechteck horizontal     | 1      | 0.15 m <sup>2</sup> | 0,08 m | dimension+ Uf 1,0 W/m²K 3fach Aufbau | -          |
| Sprossen-Rechteck vertikal       | 1      | 0.09 m <sup>2</sup> | 0.08 m | dimension+ Uf 1,0 W/m²K 3fach Aufbau |            |
| Sprossen-Rechteck vertikal       | 1      | 0.09 m <sup>2</sup> | 0.08 m | dimension+ Uf 1,0 W/m²K 3fach Aufbau | -          |

## Zwischen Rahmen und Glas wurden Wärmebrücken berücksichtigt:

Doppel- und Mehrfachgläser, unbeschichtet / Holz- und Kunststoffrahmen

Glasumfang: 0,04 W/(m·K)

12.60 m

## Zusammenfassung

Glasfläche:

2,43 m<sup>2</sup>

Rahmenfläche:

Gesamtfläche:

1,04 m<sup>2</sup> 3,47 m<sup>2</sup>

Glasanteil:

70%

U-Wert: U-Wert bei 1,23m x 1,48m : 1,15 W/m2K 1,10 W/m2K

g-Wert:

0,55

Die Anforderung an den Höchstwert des Wärmedurchgangskoeffizienten (U-Wert) laut OIB - Richtlinie 6 - Energieeinsparung und Wärmeschutz - Ausgabe: April 2007 ist erfüllt.

Geforderter U-Wert

Berechneter U-Wert bei 1,23m x 1,48m

Berechneter U-Wert

W/m²K 1.70

 $W/m^2K$ 10





Projekt: FF OPPONITZ, NEUBAU FEUERWEHRHAUS Datum: 30. August 2011 Blatt 28

Außenfenster:

AF 10 1,00/0,70m U=1,15

Breite : Höhe : 1,00 m 0,70 m

Glasumfang:

2,60 m

Dichtheit nach ÖNORM B 5300 klassifiziert :

Sanierung NÖ:

Fenster unverändert

## Rechteckige Grundform

| Bezeichnung         | Anzahl | U-Wert  | Breite | Baustoff                             |
|---------------------|--------|---------|--------|--------------------------------------|
|                     |        | [W/m²K] | [m]    |                                      |
| Innere Füllfläche   | 1      | 1,00    | -      | Verglasung Light 4b/16Ar/b4 Ug 1,0   |
| Rahmen              | 1      | 1,00    | 0,10   | dimension+ Uf 1,0 W/m²K 3fach Aufbau |
| Vertikal-Sprossen   | 0      |         | 0,00   | dimension+ Uf 1,0 W/m²K 3fach Aufbau |
| Horizontal-Sprossen | 0      |         | 0,00   | dimension+ Uf 1,0 W/m²K 3fach Aufbau |

## Zwischen Rahmen und Glas wurden Wärmebrücken berücksichtigt:

Doppel- und Mehrfachgläser, unbeschichtet / Holz- und Kunststoffrahmen

w:

0,04 W/(m·K)

Glasumfang:

2,60 m

## Zusammenfassung

Glasfläche:

0,40 m<sup>2</sup>

Rahmenfläche:

0,30 m<sup>2</sup>

Gesamtfläche:

0.70 m<sup>2</sup>

Glasanteil:

57%

U-Wert :

1,15 W/m<sup>2</sup>K

g-Wert :

0,55

U-Wert bei 1,23m x 1,48m :

1,10 W/m<sup>2</sup>K

g-wer

Die Anforderung an den Höchstwert des Wärmedurchgangskoeffizienten (U-Wert) laut OIB - Richtlinie 6 - Energieeinsparung und Wärmeschutz - Ausgabe: April 2007 ist erfüllt.

Geforderter U-Wert

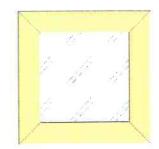
Berechneter U-Wert bei 1,23m x 1,48m Berechneter U-Wert

1.70 W/m²K

1.10 W/m²K

1 15 W/m²K




Projekt: FF OPPONITZ, NEUBAU FEUERWEHRHAUS

Datum: 30. August 2011

Blatt 29

Außenfenster:

LK 1,20/1,20m U=1,52



1,20 m Breite: 1,20 m Höhe: 3.20 m Glasumfang:

Dichtheit nach ÖNORM B 5300 klassifiziert:

Sanierung NÖ:

Fenster unverändert

## Rechteckige Grundform

| Bezeichnung         | Anzahl | U-Wert<br>[W/m²K] | Breite<br>[m] | Baustoff                                                       |
|---------------------|--------|-------------------|---------------|----------------------------------------------------------------|
| Innere Füllfläche   | 1      | 1,25              | -             | Zweifach-Wärmeschutzglas low beschichtet 4-16-4 (Ar) (Ug 1,25) |
| Rahmen              | 1      | 1,30              | 0,20          | PVC-Hohlprofile 5 Kammern (Uf 1,3)                             |
| Vertikal-Sprossen   | 0      |                   | 0,00          | PVC-Hohlprofile 5 Kammern (Uf 1,3)                             |
| Horizontal-Sprossen | 0      |                   | 0,00          | PVC-Hohlprofile 5 Kammern (Uf 1,3)                             |

## Zwischen Rahmen und Glas wurden Wärmebrücken berücksichtigt:

Doppel- und Dreifachisoliergläser mit Beschichtung / Holz- und Kunststoffrahmen

0,06 W/(m·K)

Glasumfang:

3,20 m

## Zusammenfassung

Glasfläche:

0,64 m<sup>2</sup>

Rahmenfläche:

0,80 m<sup>2</sup>

Gesamtfläche:

1,44 m<sup>2</sup>

Glasanteil:

44%

U-Wert:

1.41 W/m2K

g-Wert:

0,58

U-Wert bei 1,23m x 1,48m :

1,40 W/m2K

Die Anforderung an den Höchstwert des Wärmedurchgangskoeffizienten (U-Wert) laut OIB - Richtlinie 6 - Energieeinsparung und Wärmeschutz - Ausgabe: April 2007 ist erfüllt.

Geforderter U-Wert

Berechneter U-Wert bei 1,23m x 1,48m

Berechneter U-Wert

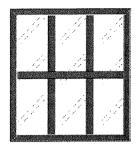
W/m²K

W/m<sup>2</sup>K 70

W/m<sup>2</sup>K 40

41






### **Bauteil-Dokumentation** Berechnung des Wärmedurchgangskoeffizienten nach EN ISO 10077-1

Projekt: FF OPPONITZ, NEUBAU FEUERWEHRHAUS Datum: 30. August 2011 Blatt 30

Außentür:

AT 01 2,50/2,80m U=1,39



Breite: 2.50 m Höhe: 2,80 m Glasumfang: 21,70 m

Dichtheit nach ÖNORM B 5300 klassifiziert :

Sanierung NÖ:

Tür unverändert

#### Rechteckige Grundform

| Bezeichnung         | Anzahi | U-Wert               | Breite | Baustoff                             |
|---------------------|--------|----------------------|--------|--------------------------------------|
|                     |        | [W/m <sup>2</sup> K] | [m]    |                                      |
| Innere Füllfläche   | 1      | 1,00                 | -      | Verglasung Light 4b/16Ar/b4 Ug 1,0   |
| Rahmen              | 1      | 1,40                 | 0,15   | Schüco Aluminium hochwärmegedämmt 1) |
| Vertikal-Sprossen   | 2      | 1,40                 | 0,15   | Schüco Aluminium hochwärmegedämmt 1) |
| Horizontal-Sprossen | 1      | 1,40                 | 0,15   | Schüco Aluminium hochwärmegedämmt 1) |

1) Diese Baustoffe stammen aus dem benutzereigenen Baustoffkatalog!

Zwischen Rahmen und Glas wurden Wärmebrücken berücksichtigt:

Doppel- und Dreifachisoliergläser mit Beschichtung / Metallrahmen mit Wärmebrücken-Unterbrechung

0,08 W/(m·K)

Glasumfang:

21,70 m

#### Zusammenfassung

Glasfläche: Rahmenfläche: 4.47 m<sup>2</sup> 2,54 m<sup>2</sup>

Gesamtfläche:

7,00 m<sup>2</sup>

Glasanteil:

64%

U-Wert: U-Wert bei 1,23m x 1,48m : 1,39 W/m2K

1,34 W/m2K

g-Wert:

0,55

Die Anforderung an den Höchstwert des Wärmedurchgangskoeffizienten (U-Wert) laut OIB - Richtlinie 6 - Energieeinsparung und Wärmeschutz - Ausgabe: April 2007 ist erfüllt.

Geforderter U-Wert

**Berechneter U-Wert** bei 1,23m x 1,48m

**Berechneter U-Wert** 

W/m²K . 70

W/m²K 34

W/m²K 39



### **Bauteil-Dokumentation** Berechnung des Wärmedurchgangskoeffizienten nach EN ISO 10077-1

Projekt: FF OPPONITZ, NEUBAU FEUERWEHRHAUS

Datum: 30. August 2011

Blatt 31

Innenfenster:

IF 01 1,50/1,40m U=2,10



Breite: Höhe:

1.50 m 1,40 m

Glasumfang:

5,00 m

Dichtheit nach ÖNORM B 5300 klassifiziert ;

Sanierung NÖ:

Fenster unverändert

#### Rechteckige Grundform

| Bezeichnung         | Anzahl | U-Wert<br>[W/m²K] | Breite<br>[m] | Baustoff                                                       |
|---------------------|--------|-------------------|---------------|----------------------------------------------------------------|
| Innere Füllfläche   | 1      | 1,25              | 2.2           | Zweifach-Wärmeschutzglas low beschichtet 4-16-4 (Ar) (Ug 1,25) |
| Rahmen              | 1      | 4,00              | 0,10          | Metallrahmen mit thermischer Trennung (Uf 4,0)                 |
| Vertikal-Sprossen   | 0      |                   | 0,00          | Metallrahmen mit thermischer Trennung (Uf 4,0)                 |
| Horizontal-Sprossen | 0      |                   | 0.00          | Metallrahmen mit thermischer Trennung (Uf 4,0)                 |

#### Zwischen Rahmen und Glas wurden Wärmebrücken berücksichtigt:

Doppel- und Dreifachisoliergläser mit Beschichtung / Holz- und Kunststoffrahmen

0,06 W/(m·K)

5,00 m

#### Zusammenfassung

Glasfläche :

1,56 m<sup>2</sup>

Rahmenfläche:

0,54 m<sup>2</sup>

Gesamtfläche:

2,10 m<sup>2</sup>

Glasanteil:

74%

U-Wert:

2,10 W/m2K

g-Wert:

0.58

U-Wert bei 1,23m x 1,48m

2,16 W/m2K

Die Anforderung an den Höchstwert des Wärmedurchgangskoeffizienten (U-Wert) laut OIB - Richtlinie 6 - Energieeinsparung und Wärmeschutz - Ausgabe: April 2007 ist erfüllt.

Geforderter U-Wert

Berechneter U-Wert bei 1,23m x 1,48m

Berechneter U-Wert

W/m²K

W/m²K 2.50

W/m²K 2.16

2.10





### **Bauteil-Dokumentation** Berechnung des Wärmedurchgangskoeffizienten nach EN ISO 10077-1

Projekt: FF OPPONITZ, NEUBAU FEUERWEHRHAUS Datum: 30. August 2011 Blatt 32

Innentür:

IT 01 1,20/2,20m U=2,50



1,20 m Breite: Höhe: 2,20 m Glasumfang 6,00 m

Dichtheit nach ÖNORM B 5300 klassifiziert :

Sanierung NÖ:

Tür unverändert

#### Rechteckige Grundform

| Bezeichnung         | Anzahl | U-Wert<br>[W/m²K] | Breite<br>[m] | Baustoff          |
|---------------------|--------|-------------------|---------------|-------------------|
| Innere Füllfläche   | 1      | 2,50              |               | Innentür Standard |
| Rahmen              | 1      | 2,50              | 0,10          | Innentür Standard |
| Vertikal-Sprossen   | 0      |                   | 0,00          | Innentür Standard |
| Horizontal-Sprossen | 0      |                   | 0,00          | Innentür Standard |

Zwischen Rahmen und Glas wurden Wärmebrücken berücksichtigt:

Doppel- und Mehrfachgläser, unbeschichtet / Holz- und Kunststoffrahmen

0,04 W/(m·K) Glasumfang :

Zusammenfassung

Glasfläche :

0,00 m<sup>2</sup>

Rahmenfläche:

2,64 m<sup>2</sup>

2,64 m<sup>2</sup>

Gesamtfläche:

Glasanteil:

0%

6.00 m

U-Wert:

2,50 W/m2K

g-Wert:

0,60

U-Wert bei 1,23m x 1,48m : 2,50 W/m2K

Die Anforderung an den Höchstwert des Wärmedurchgangskoeffizienten (U-Wert) laut OIB - Richtlinie 6 - Energieeinsparung und Wärmeschutz - Ausgabe: April 2007 ist erfüllt.

Geforderter U-Wert

Berechneter U-Wert bei 1,23m x 1,48m

Berechneter U-Wert

W/m<sup>2</sup>K

W/m²K 2,50

W/m²K 2.50

50



Blatt 33

## Baukörper-Dokumentation Kommandogebäude

Projekt: **FF OPPONITZ, NEUBAU FEUERWEHRHAUS**Datum: 30. August 2011

Baukörper: Kommandogebäude

# **Beheizte Hülle**

| Bezeichnung | Anz.                    | Breite                                                             | Höhe                 | Bauteil                  | Ausrichtung | Zustai                | nd          | Brutto-<br>Fläche                | Netto-<br>Fläche                                                                                                       |
|-------------|-------------------------|--------------------------------------------------------------------|----------------------|--------------------------|-------------|-----------------------|-------------|----------------------------------|------------------------------------------------------------------------------------------------------------------------|
| NO AW 01    | 1                       | 0,00 m                                                             | 0,00 m               | AW01 Ziegel VWS<br>20 cm | Nord-Ost    | warn<br>auße          |             | 30,84 m²                         | 24,08 m <sup>2</sup>                                                                                                   |
|             | Abzűc                   | ge/Zuschlä                                                         | ae                   | Zeichnung                | a P         | arameter /            |             | Einzelfl.                        | Gesamtfl.                                                                                                              |
|             |                         | ingabe                                                             |                      |                          | a =         | 15,58 m               | 1           | 15,58 m²                         | 15,58 m²                                                                                                               |
|             |                         |                                                                    |                      |                          |             |                       |             |                                  |                                                                                                                        |
|             | freie E                 | ingabe                                                             |                      |                          | a =         | 15,26 m               | 1           | 15,26 m²                         | 15,26 m²                                                                                                               |
|             | AF 02                   | 1,10/3,00r                                                         | n U=1.11             | V.                       |             |                       | 1           | -3,30 m²                         | -3,30 m²                                                                                                               |
|             | AF 05<br>Zusch          | 1,65/2,10r<br>lags/Abzug                                           | n U=1,15             | läche                    |             |                       | 1           | -3,47 m²                         | -3,47 m <sup>2</sup><br>30,84 m <sup>2</sup>                                                                           |
|             | Fenste                  | er-Fläche                                                          |                      |                          |             |                       |             |                                  | -6,77 m²                                                                                                               |
| SO AW 01    | 1                       | 0,00 m                                                             | 0,00 m               | AW01 Ziegel VWS<br>20 cm | Süd-Ost     | warm<br>auße          | en          | 96,26 m²                         | 64,03 m²                                                                                                               |
|             |                         | ge/Zuschlä<br>ingabe                                               | ige                  | Zeichnung                | g P         | arameter A<br>49,14 m | nz.         | Einzelfl.<br>49,14 m²            | Gesamtfl.<br>49,14 m²                                                                                                  |
|             | froia F                 | ingabe                                                             |                      |                          | a =         | 34,30 m               | 1           | 34,30 m²                         | 34,30 m²                                                                                                               |
|             | ilele E                 | Illigabe                                                           |                      |                          | a -         | 04,30 III             | •           | 54,50 m                          | 04,00                                                                                                                  |
|             | freie E                 | Eingabe                                                            |                      |                          | a =         | 8,40 m                | 1           | 8,40 m²                          | 8,40 m²                                                                                                                |
|             | freie E                 | Eingabe                                                            |                      |                          | a =         | 4,42 m                | 1           | 4,42 m²                          | 4,42 m²                                                                                                                |
|             | AF 03<br>AF 04<br>Zusch | 1,10/3,55i<br>3 1,10/2,10i<br>4 2,75/2,10i<br>hlags/Abzuger-Fläche | m U=1,12<br>m U=1,14 | Fläche                   |             |                       | 5<br>3<br>1 | -3,91 m²<br>-2,31 m²<br>-5,78 m² | -19,53 m <sup>2</sup><br>-6,93 m <sup>2</sup><br>-5,78 m <sup>2</sup><br>96,26 m <sup>2</sup><br>-32,23 m <sup>2</sup> |
| SW AW 01    | 1                       | 0,00 m                                                             | 0,00 m               | AW01 Ziegel VWS<br>20 cm | Süd-West    | warn<br>auß           |             | 94,38 m²                         | 87,38 m²                                                                                                               |





## Baukörper-Dokumentation Kommandogebäude

Projekt: FF OPPONITZ, NEUBAU FEUERWEHRHAUS Datum: 30. August 2011

Blatt 34

Baukörper: Kommandogebäude

|           | Abzüge/Zuschläge freie Eingabe                                     | Zeichnu                  | ing a =                                   | Parameter<br>18,55 m | Anz. | Einzelfl.<br>18,55 m² | Gesamtfl.<br>18,55 m <sup>2</sup>                                     |
|-----------|--------------------------------------------------------------------|--------------------------|-------------------------------------------|----------------------|------|-----------------------|-----------------------------------------------------------------------|
|           | nele Lingabe                                                       |                          | a –                                       | 10,55 111            | ,    | 10,55 111             | 10,55 111                                                             |
|           | freie Eingabe                                                      |                          | a=                                        | 32,28 m              | 1    | 32,28 m²              | 32,28 m <sup>2</sup>                                                  |
|           | freie Eingabe                                                      |                          | a =                                       | 43,55 m              | 1    | 43,55 m²              | 43,55 m²                                                              |
|           | AT 01 2,50/2,80m U=1,39<br>Zuschlags/Abzugs Wand-Fla<br>Tür-Fläche | àche                     |                                           |                      | 1    | -7,00 m²              | -7,00 m²<br>94,38 m²<br>-7,00 m²                                      |
| NW AW 01  | 1 0,00 m 0,00 m                                                    | AW01 Ziegel VWS<br>20 cm | Nord-Wes                                  | t war<br>auß         |      | 62,70 m²              | 58,50 m²                                                              |
|           | Abzüge/Zuschläge                                                   | Zeichnu                  | ng F                                      | Parameter            |      | Einzelfl.             | Gesamtfl.                                                             |
|           | freie Eingabe                                                      |                          | a =                                       | 48,82 m              | 1    | 48,82 m <sup>2</sup>  | 48,82 m²                                                              |
|           |                                                                    |                          |                                           |                      |      |                       |                                                                       |
|           | freie Eingabe                                                      |                          | a =                                       | 8,69 m               | 1    | 8,69 m²               | 8,69 m²                                                               |
|           | freie Eingabe                                                      |                          | a =                                       | 4,42 m               | 1    | 4,42 m²               | 4,42 m²                                                               |
|           | AF 10 1,00/0,70m U=1,15 freie Eingabe                              |                          | a =                                       | 0,77 m               | 6    | -0,70 m²<br>0,77 m²   | -4,20 m²<br>0,77 m²                                                   |
| FB 01 KDO | Zuschlags/Abzugs Wand-Flä<br>Fenster-Fläche<br>1 0,00 m 0,00 m     | FB 01 Fussboden<br>KDO   | Erdanliegend<br><= 1,5m<br>unter Erdreich | auß                  |      | 316,37 m²             | 62,70 m <sup>2</sup><br>-4,20 m <sup>2</sup><br>316,37 m <sup>2</sup> |



## Baukörper-Dokumentation Kommandogebäude

Projekt: FF OPPONITZ, NEUBAU FEUERWEHRHAUS Datum: 30. August 2011

Blatt 35

Baukörper: Kommandogebäude

|                       | Abzüge/Zuschläge      | Zeichnung                             | Pa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | rameter Anz.    | Einzelfl.             | Gesamtfl.             |
|-----------------------|-----------------------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------------|-----------------------|
|                       | freie Eingabe         |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 316,37 m 1      | 316,37 m <sup>2</sup> | 316,37 m <sup>2</sup> |
|                       |                       |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |                       |                       |
|                       | Zuschlags/Abzugs Wand | Fläche                                | and a statement of the |                 |                       | 316,37 m <sup>2</sup> |
| FD 01 KDO             | 1 0,00 m 0,00 n       |                                       | Horizontal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | warm /<br>außen | 242,17 m <sup>2</sup> | 237,85 m²             |
|                       | Abzüge/Zuschläge      | Zeichnung                             | Pa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | rameter Anz.    | Einzelfl.             | Gesamtfl.             |
|                       | freie Eingabe         | · · · · · · · · · · · · · · · · · · · | a = 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 42,17 m 1       | 242,17 m <sup>2</sup> | 242,17 m <sup>2</sup> |
|                       |                       |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |                       |                       |
|                       | LK 1,20/1,20m U=1,52  | E 1000 10 0 10 10                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3               | -1,44 m²              | -4,32 m²              |
|                       | Zuschlags/Abzugs Wand | -Fläche                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |                       | 242,17 m <sup>2</sup> |
|                       | Fenster-Fläche        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |                       | -4,32 m²              |
| NW AW 05 erdanliegend | 1 0,00 m 0,00 n       | cm                                    | rdanliegend<br><= 1,5m<br>nter Erdreich                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | warm /<br>außen | 33,54 m²              | 33,54 m²              |
|                       | Abzüge/Zuschläge      | Zeichnung                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | rameter Anz.    | Einzelfl.             | Gesamtfl.             |
|                       | freie Eingabe         |                                       | a =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 33,54 m 1       | 33,54 m²              | 33,54 m <sup>2</sup>  |
|                       |                       |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |                       |                       |
|                       | Zuschlags/Abzugs Wand | -Fläche                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |                       | 33,54 m²              |
| FD 02 KDO             | 1 0,00 m 0,00 r       |                                       | Horizontal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | warm /<br>außen | 74,21 m²              | 74,21 m²              |
|                       |                       |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 | 1 1                   |                       |
|                       | Abzüge/Zuschläge      | Zeichnung                             | Pa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | rameter Anz.    | Einzelfl.             | Gesamtfl.             |

Zuschlags/Abzugs Wand-Fläche

74 21 m<sup>2</sup>

# **Beheiztes Volumen**

| Bezeichnung | Tvp           | Zeichnung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Parameter | Anzahl | Abzug | Zuschlag    |
|-------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------|-------|-------------|
| KDO Gebäude | Freie Eingabe | The second secon |           | 1      |       | 1.468,86 m³ |

Summe

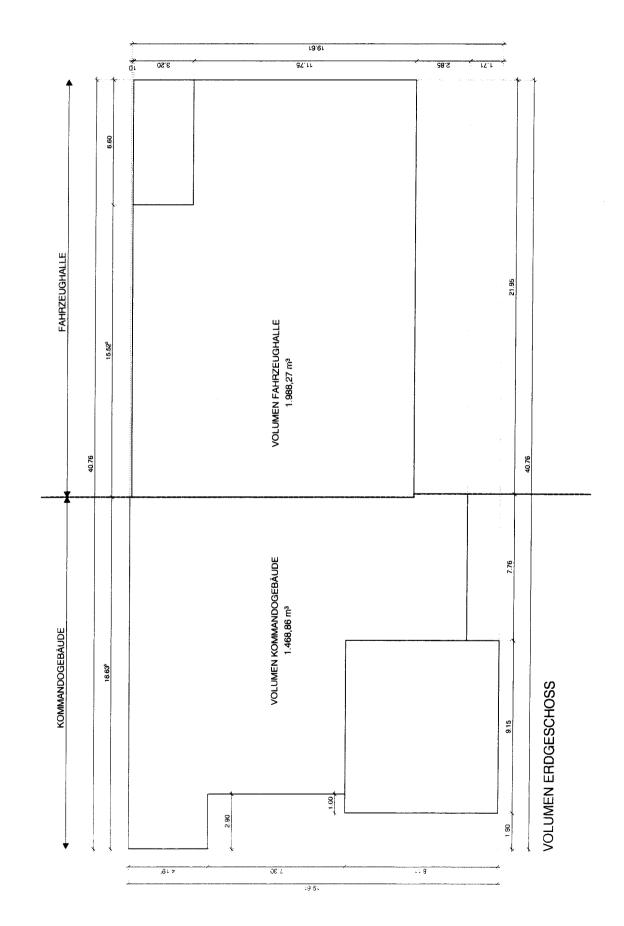
1.468,86 m<sup>3</sup>



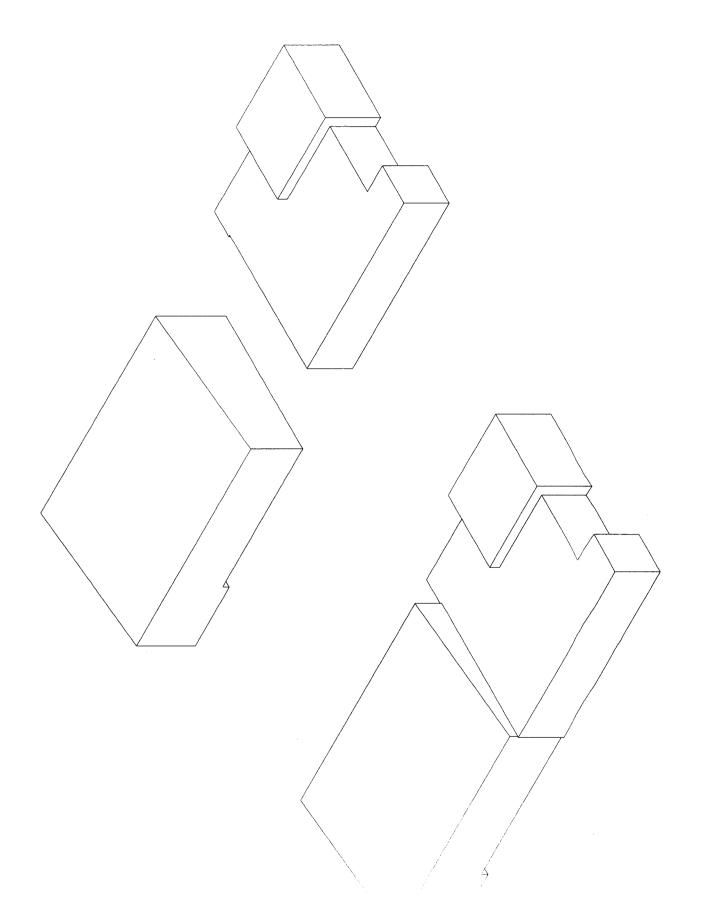


## Baukörper-Dokumentation Kommandogebäude

Projekt: FF OPPONITZ, NEUBAU FEUERWEHRHAUSDatum: 30. August 2011

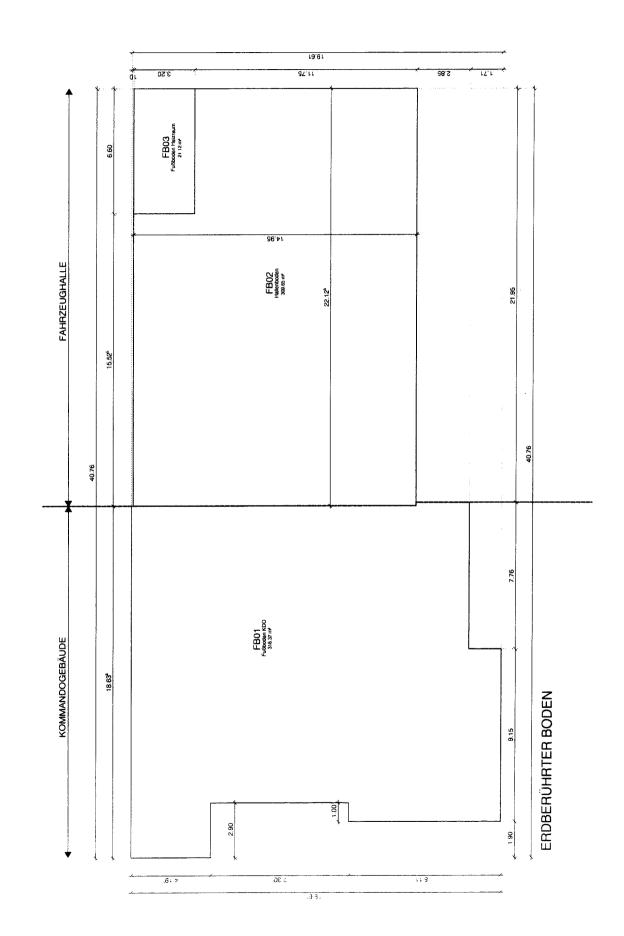

Blatt 36

Baukörper: Kommandogebäude

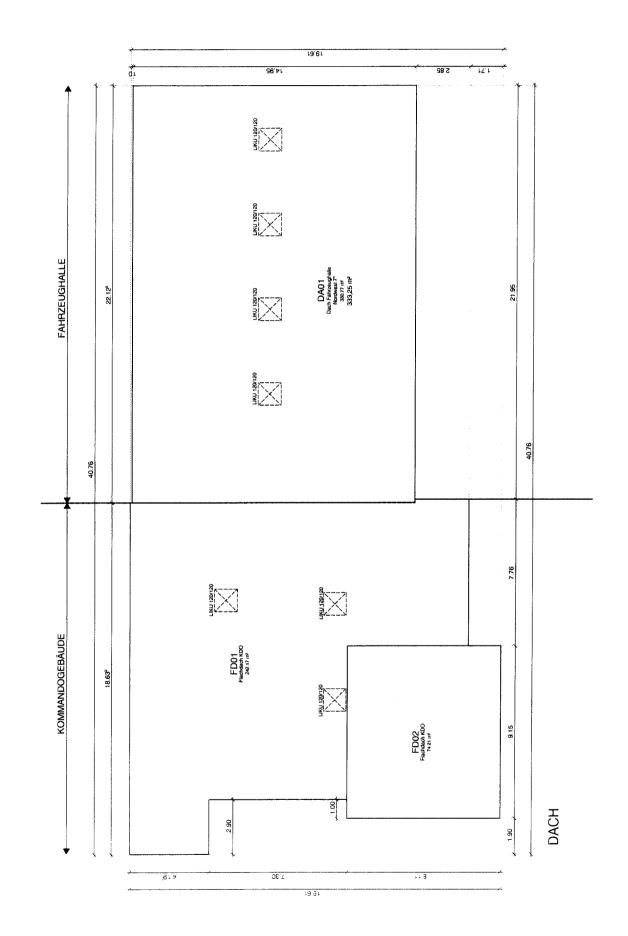

# Beheizte Brutto-Geschoßfläche

| Bezeichnung | Anz.                      | Länge           | Breite | Bauteil                | Ausrichtu                            | ng Zus    | tand  | Brutto-<br>Fläche | Netto-<br>Fläche                               |
|-------------|---------------------------|-----------------|--------|------------------------|--------------------------------------|-----------|-------|-------------------|------------------------------------------------|
| FB 01 KDO   | 1                         | 1 0,00 m 0,00 m |        | FB 01 Fussboden<br>KDO | Erdanliege<br><= 1,5<br>unter Erdrei | im au     | außen |                   | 316,37 m²                                      |
|             | Abzüg                     | ge/Zuschlä      | ge     | Zeichnu                | ng                                   | Parameter | Anz.  | Einzelfl.         | Gesamtfl.                                      |
|             | freie E                   | ingabe          |        |                        | a =                                  | 316,37 m  | 1     | 316,37 m²         | 316,37 m²                                      |
| Summe       | Zuschlags/Abzugs Wand-Flä |                 |        | äche                   |                                      |           |       |                   | 316,37 m <sup>2</sup><br>316,37 m <sup>2</sup> |
| Reduktion   |                           |                 |        |                        |                                      |           |       |                   | 0.00 m <sup>2</sup>                            |
| PCE         |                           |                 |        |                        |                                      |           |       |                   | 316 37 m²                                      |



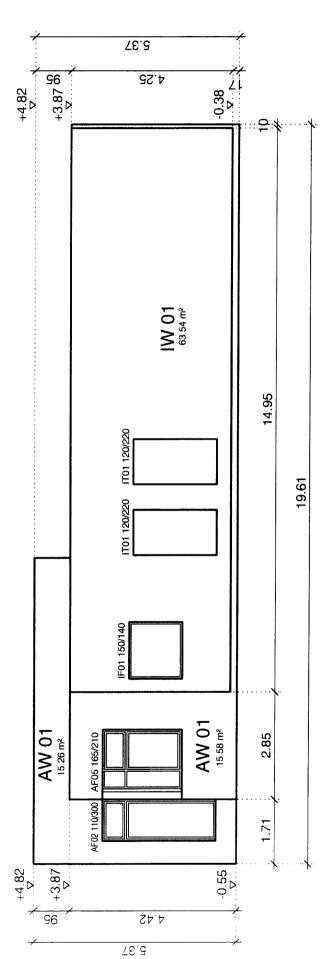




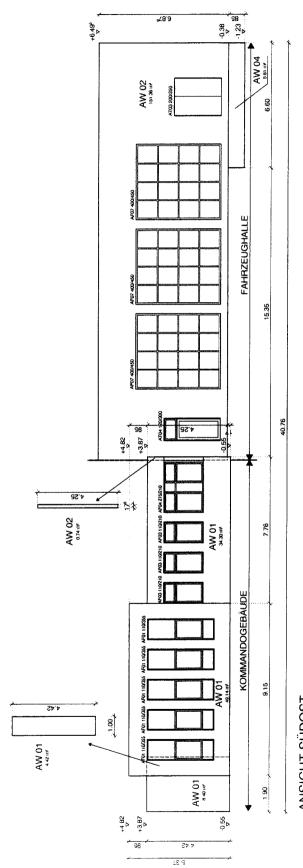

127-05-2009 FF FEUERWEHRHAUS, OPPONITZ ER SKIZZEN ENERGIEAUSWEIS vom 06-07-2011 1:300 30.08.2011









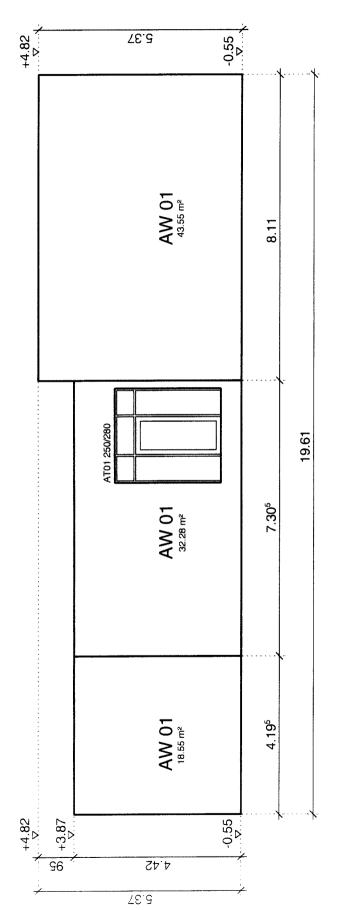







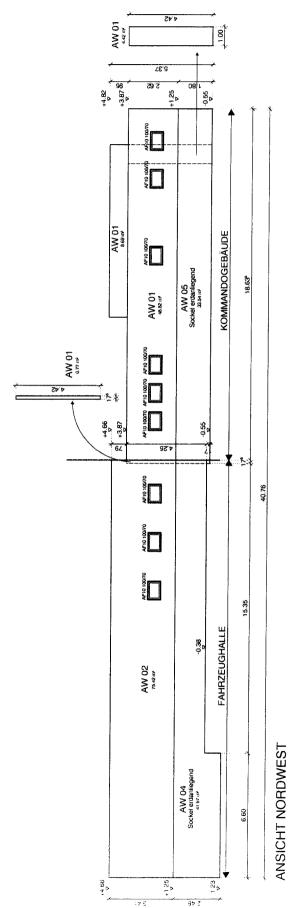

ANSICHT NORDOST KOMMANDOGEBÄUDE






127-05-2009 FF FEUERWEHRHAUS, OPPONITZ ER SKIZZEN ENERGIEAUSWEIS vom 06-07-2011 1: 200 01:09:2011

ANSICHT SÜDOST








ANSICHT SÜDWEST KOMMANDOGEBÄUDE





127-05-2009 FF FEUERWEHRHAUS, OPPONITZ ER SKIZZEN ENERGIEAUSWEIS vom 06-07-2011 1:200 01.09.2011

